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[1] We use 1661 strong-motion accelerograms with peak
ground acceleration (PGA) larger than 80 Gal (1 Gal =
1.0 cm/s®) from 77 earthquakes recorded by the Taiwan
Strong Motion Instrumentation Program (TSMIP) stations
to derive a strong-motion attenuation relationship. This
relationship can be used to dynamically define a “M,,,,
magnitude” for earthquakes using earthquake locations
determined by earthquake early warning process. The
M,,, magnitude using this strong-motion attenuation
relationship corresponds well with M,, given a sufficient
number of PGA readings. MEMS (Micro Electro Mechanical
Systems) acceleration sensor could be widely used for ground
motion monitoring purposes. Thus, we propose that once a
large earthquake has begun, that we might be able to use
strong, near-field (tens of kilometers) PGA values to quickly
estimate the earthquake’s magnitude, which would improve
earthquake early warning. Citation: Lin, T.-L., and Y.-M. Wu
(2010), Magnitude determination using strong ground-motion
attenuation in earthquake early warning, Geophys. Res. Lett., 37,
L07304, doi:10.1029/2010GL042502.

1. Introduction

[2] When a large earthquake occurs, an earthquake early
warning (EEW) system can alert populations, sensitive
facilities such as nuclear reactors, gas pipelines, and public
transportation systems, ahead of the arrival of strong ground
shaking. The idea of an EEW system was proposed more
than one hundred years ago by Cooper [1868] for San
Francisco, California. An early warning leading time can be
a few seconds to a few tens of seconds depending on the
distance between the earthquake and the target warning
areas. Although this warning time window might seem
short, it can be critical, as even a few seconds are sufficient
to initiate pre-programmed EEW emergency safety responses.
Therefore, EEW is a practical, effective approach to seismic
risk mitigation on a short time-scale [Kanamori et al., 1997,
Teng et al., 1997; Wu and Teng, 2002; Allen and Kanamori,
2003; Kanamori, 2005] as compared to the longer time-scale
earthquake prediction.

[3] The two most commonly used types of EEW are
regional and onsite warning systems. In regional EEW, the
ground shaking characteristics recorded by seismic sensors
closest to the earthquake rupture are used to predict strong
ground motions at more distant target areas. In onsite EEW,
the initial P-wave motion at a given site is used to predict
the ground motions of the later S and surface waves (which
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commonly have higher amplitudes or destructive energy
than that of the initial P-wave motion) at the same site or
region where the onsite warning instruments are operating.

[4] An onsite EEW system must predict the earthquake’s
magnitude, and the ensuing peak ground motion rapidly and
reliably. An average period parameter (7.) from the initial
3 seconds of the P-wave [Kanamori, 2005; Wu and
Kanamori, 2005a; Wu et al., 2007a], originally proposed
by Nakamura [1988], and Allen and Kanamori [2003], can
be used to predict the size of an earthquake. Wu and
Kanamori [2008a, 2008b] showed that earthquake magni-
tude (M,,) could be estimated from 7. for strong motion data
from the Japan, Taiwan, and southern California records.
Wu and Kanamori [2005b] and Wu et al. [2007a] showed
that the peak initial displacement amplitude, Pd, from the
first 3 seconds of the P-wave correlates well with the
peak ground-motion velocity, PGV, observed at the same
site, using strong motion data from Taiwan and southern
California, respectively. Combining 7. and Pd (7. x Pd),
Wu and Kanamori [2005b] demonstrated that 7. x Pd
provides a more reliable indicator for indentifying damaging
earthquakes.

[5s] For regional EEW, rapid and reliable determination of
earthquake magnitude is more difficult than the estimation
of other parameters (such as earthquake location) because
the shear wave portion may not completely arrive in a few
to ten seconds time window [Wu and Zhao, 2006]. Using
the real-time strong-motion network in Taiwan, Wu et al.
[1998] proposed the Mj;) method based on the first
10 seconds of the P-wave to determine earthquake magni-
tude that is well correlated to the local magnitude M, for
regional EEW purpose. In the regional EEW approach, Wu
and Zhao [2006] showed, for earthquakes in southern
California, that Pd is also a robust measurement for estimat-
ing the earthquake magnitude. Onsite EEW systems under
development in Taiwan and southern California will use the
7. method for magnitude determination.

[6] This study provides a novel, experimental concept
to rapidly determine earthquake magnitude using strong
ground-motion attenuation once an earthquake location is
determined by the onsite [Odaka et al., 2003] and regional
[Rydelek and Pujol, 2004; Horiuchi et al., 2005; Cua and
Heaton, 2007; Wurman et al., 2007] EEW techniques. We
first define a strong ground-motion attenuation relationship
for Taiwan for large crustal earthquakes with PGA obser-
vations larger than 80 Gal. Then, we use the resulting strong
motion attenuation relationship to invert for the M,,,
magnitude. Our estimated M,,, magnitudes agree well with
M,, for large earthquakes with sufficient numbers of PGA
observations. We propose that the magnitude determination
method presented in this study might be integrated into
current operating EEW rapid reporting systems to provide
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Figure 1. Locations of seismic stations (triangles) of the
TSMIP seismic network. The epicenter of 77 earthquake
events used in this study are show as the open circles. The
TSMIP stations are limited in the high-relief mountain
ranges.

an additional EEW magnitude parameter, thus building
more redundancy in the EEW system.

2. Strong Ground-Motion Attenuation

[7] Taiwan, located in the western part of the Pacific Rim
seismic belt, is situated in the collision boundary zone
between the Philippine Sea and Eurasian continental plates.
Therefore, the seismicity in Taiwan is considerably high.
Considering its high population density and seismic activity,
Taiwan is an area that is vulnerable to serious seismic
hazard. A large magnitude earthquake such as the 1999
Chi-Chi event could once again strike Taiwan and cause
catastrophic loss of life and massive economic damage.

[8] The TSMIP [Liu et al., 1999] operated by the Taiwan
Central Weather Bureau (CWB), consists of over 800 free-
field seismic stations densely distributed throughout Taiwan
as of 2008 (Figure 1). The TSMIP has an average station
spacing of about 5 km throughout most populated areas,
except that they are much less densely distributed in the
higher relief mountain ranges. Each TSMIP station is equipped
with a three-component, force-balance accelerometer with
a 16- or 24-bits resolution digitizer, with a sampling rate of
200 Hz or higher. This instrument’s acceleration response is
flat from DC to about 50 Hz.
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[9] For this study, we used shallow crustal earthquakes
with PGA values (on ay least one of the three components)
exceeding 80 Gal, recorded by the TSMIP stations from
1993 to 2008; since either EEW or rapid reporting is prin-
cipally and practically applied to large damaging earth-
quakes. A PGA value larger than 80-Gal corresponds to a
CWRB intensity scale of V (80-250 Gal) in Taiwan [Wu
et al, 2003], or to a Modified Mercalli intensity scale
[Wald et al., 1999] value of VI (92-180 Gal). Large, shal-
low inland earthquakes often cause the most serious dam-
age. We assume that 42 km is the average depth to the Moho
interface in Taiwan [Tomfohrde and Nowack, 2000; Wu et
al. 2007b], and define a shallow earthquake as one having
a focal depth of less than 42 km. In fact, most inland or
offshore (distance to shoreline < 5 km) earthquakes that
cause ground shaking to a maximum PGA > 80 Gal have
focal depths shallower than 25 km in Taiwan. We ended up
with 1661 PGA readings larger than 80 Gal recorded by
TSMIP stations, from 77 crustal earthquakes (Figure 1 and
Table S1) to use to derive the strong ground-motion atten-
uation relationship for this study. We then used these
observations to invert for the constants in our assumed
“M,,q, magnitude” parameterization.

[10] We chose a strong ground-motion attenuation rela-
tionship of the from:

log,y PGA = alog,(r) + bM + ¢, (1)

where r is the epicenter distance in km, M is the moment
magnitude (M), a and b are empirical coefficients for
geometrical spreading and magnitude, respectively, and ¢ is
a constant. Coefficients a, b, and ¢ are the parameters to be
determined from a regression analysis. The use of M,
instead of local magnitude (M}) avoids the magnitude satu-
ration of large earthquakes, which is particularly important
as EEW and rapid reporting are mostly directed toward
larger earthquakes. We have adopted the M, that were
reported by Harvard centroid moment tensor (CMT) project.
For earthquakes without Harvard CMT solutions, mostly
smaller than M, 5.3, we have used the empirical equation
(equation (2)) to convert My to M, [Chen and Tsai, 2008]:

My = —024+ 1.07My +0.31. (2)

As these earthquakes are too small to saturate M, we
assume that this formula provides a good estimate of M, for
this subset of low magnitude events. The epicenter distance
(r) is used because most large damaging earthquakes in
Taiwan are located in the shallow crust and in the current
processes of EEW, the estimation of epicenter location might
be more practical and accurate than real time estimates of
hypocentral location.
[11] Equation (1) can be rewritten in matrix form as:

[ logorr  M; 17 [ log;g PGA; T
a
logipra My 1 log,y PGA,
b| = 3)
¢
Llogg 71661 Mi7 1] Llog,o PGA1e61 |

or Gm = d. Equation (3) presents a typical overdetermined
inversion problem. The vector of unknowns (m) were found
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Figure 2. (a) Distribution of the residuals between observed and predicted (equation (4)) accelerations. The variance of the
residual distribution was used for the error estimation. Residuals are plotted against (b) epicenter distance and (c) logarithms

of observed PGA.

through generalized inverse matrix of G (G™¥) using singular
value decomposition (SVD) [Menke, 1984; Miao and Langston,
2007]. Unlike most common attenuation relationships,
anelastic attenuation (linear  term) is not considered in the
right-hand side of equation (1). This is because we found
that variances (standard deviations) of the model parameters
(a and c¢) significantly increase in the SVD computations if
we include this term. Moreover, in studies of M; determi-
nation [Wu et al., 2005] and Pd attenuation [Wu and Zhao,
2006], both found that the linear » term is not statistically
significant. Using 1661 PGA readings (> 80 Gal) from
77 events recorded by the dense TSMIP stations in Taiwan,
we thus obtain a strong ground-motion attenuation relation-
ship of:

logyo PGA = —0.395log,(r) + 0.125M + 1.979 £ 0.161. (4)
The standard deviation (0.161) in equation (4) is one stan-
dard deviation of the normal distribution that best fits the
frequency of log;oPGA residuals (Figure 2). Note that for
the PGA readings observed at epicenter distances less than
3 km (i.e., high PGA) are not used in the SVD inversion
since these PGA readings usually have abnormal residuals.
Figures 2b and 2c indicate that in general the PGA residuals
increase as the epicenter distances and the values of log(PGA
increase.

3. Magnitude Determination

[12] Given an epicenter location produced by either a
regional or an onsite EEW system immediately after the
occurrence of a large earthquake; the M,,,, magnitude can be
simultaneously and dynamically estimated by solving for M
in equation (4) for each PGA observation as it becomes
available. Figure 3 gives four examples of the M,,, mag-
nitude history in real time given by equation (4), with
increasing numbers of PGA observations, compared to
the reported M,, magnitude for the event. Figure 3a is an

example for the 1999 Chi-Chi, Taiwan earthquake (M, =
7.6) which is to date the largest inland recorded event,
responsible for the largest number of death, and damage in
Taiwan’s natural hazard history. During the Chi-Chi earth-
quake main shock, a total of 227 acceleration records having
PGA values larger than 80 Gal were registered by the
TSMIP stations. We consider all four example earthquakes
to be large enough to test our implementation of an EEW
and rapid reporting system.

[13] The M,,, magnitude, resulting from our inversion
of the strong-motion attenuation relationship (equation (4))
generally corresponds well with the reported M, magnitude
(Figure 3). As the number of PGA recordings increases for a
given event, its M,,,, magnitude approaches the reported M,,
magnitude for that earthquake. In general, about 20-30 PGA
recordings provide a stable estimate of M,,, suitable for
reporting as part of an EEW system. The distribution maps
of PGA recording (Figure 3) show that given the current
TSMIP station density, an area enclosed by a circle of a
radius of about 50 km will provide a satisfactory number
of PGA readings to produce a stable M,,.,. Even though
PGA values smaller than 80 Gal were not used to obtain
equation (4), the M,,,, magnitudes agree well with the reported
M,, magnitudes.

4. Discussion

[14] EEW and rapid reporting systems are applied to
earthquakes large enough to cause disastrous damages.
Therefore, it is desirable to have rapid earthquake magnitude
determinations that are accurate for the very large earth-
quakes (says M,, > 6.5). Figures 4a and 4b compare M,,,
magnitudes with M, magnitudes for earthquakes larger than
M,, = 4.5, and for those larger than M, = 6.0, respectively.
Figure 4 indicates that the M,,,, magnitudes estimated from
the PGA values for the earthquakes of M, > 6.0 have the
smaller standard deviations (SD) than those for the earth-

quakes of M,, > 4.5. We attribute this result to the larger
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Figure 3. (a—d) The maps of the TSMIP stations recording the PGA values larger than 80 Gal and the relation between the
M, magnitude and the numbers of the PGA recording for the four large earthquakes. The crosses and circles in the maps
indicate the epicenters and the TSMIP station locations with the PGA values larger than 80 Gal. The close circles indicate

the closest 50 stations to the epicenters.
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Figure 4. Comparisons of the M,,,, magnitude to M,, magnitude for earthquakes larger than (a) M,, = 4.5 and (b) M,, = 6.0,
respectively.
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number of PGA recordings and to the better epicenter dis-
tance coverage for the larger magnitude earthquakes. Note
that in Figure 4 the number of the PGA recordings of each
earthquake is required to be greater than 20 recordings. Due
to the lack of events with M, > 7.0, it is difficult to identify
the saturation problem [Schmedes and Archuleta, 2008] of

the M,,, magnitude in this study.

[15] Figures 3 and 4 imply that more seismic stations (i.e.,
recordings) within a few tens of kilometers of an earth-

quake’s epicenter will improve the accuracy of the M,,,

estimate of M. Therefore, a dense seismic network is
critical for the effective use of our proposed magnitude
determination method in real time, on-line EEW practice.
The MEMS acceleration sensors that have been recently
introduced into seismic applications [Holland, 2003] are
miniature, low cost, and ideal for recording near-field, high-
frequency ground motions. The magnitude determination
method proposed in this paper would be extremely fast and
accurate if based on data from dense seismic networks via
extensive installation of MEMS accelerometers. MEMS
accelerometer networks have been successfully tested by the
Quake-Catcher Network, which may have the potential for
EEW [Cochran et al., 2009]. In addition, more robust
determination of earthquake magnitude is expected by
combining the regional-oriented M,,, method and the Mp,
method introduced by Wu and Zhao [2006], with that the
onsite-determined magnitude using 7. to have more redun-
dancy of magnitude determination in future EEW systems.
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