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The Taiwan mountain belt is often cited as an example par excel-
lence of a thin-skinned fold-and-thrust belt (i.e. the sedimentary 
carapace of the margin is detached above the pre-rift basement) 
underlain by a shallow detachment that ramps down into the base-
ment only in the easternmost part of the thrust belt (Suppe 1980, 
1981, 1987; Tillman & Byrne 1995; Wang et al. 2000; Ding et al. 
2001; Carena et al. 2002; Yue et al. 2005; Malavieille &  
Trullenque 2009). Although there is general agreement that this 
thin-skinned structural model is correct along much of the western 
part of the orogen, recent studies have suggested that the structure 
and level of crustal involvement in its internal part may differ sig-
nificantly from that model (e.g. Wu et al. 1997, 2004; Gourley 
et al. 2007; Brown et al. 2012). This change takes place across the 
Shuilikeng fault. Even before it was shown to be a fault, Ichikawa 
et al. (1927) recognized that an important contact existed between 
what today are known to be Miocene rocks to the west and 
Eocene–Oligocene rocks to the east. In more recent compilations 
of Taiwan geology (e.g. Chinese Petroleum Company 1982, 1994; 
Ho 1988; Chen et al. 2000) this contact has been clearly defined as 
a fault (albeit with different names; see below) that extends from 
south of Yushan Mountain in central Taiwan to the north coast 
(Fig. 1). In our study area in central Taiwan (Figs 1 and 2), surface 
geology (e.g. rock ages, structural style, amount of deformation, 
level of exhumation), a significant increase in the number and the 
deeper crustal level of seismic events to the east of the fault and, 
eastward, higher P-wave velocities at shallower depths, all coin-
cide to indicate a significant change across the Shuilikeng fault 
(Fig. 1) (Wang et al. 2000; Kim et al. 2005, 2010; Beyssac et al. 
2007; Lin 2007; Sakaguchi et al. 2007; Simoes et al. 2007, 2012; 
Wu et al. 2007; Yamato et al. 2009; Brown et al. 2012; Kuo-Chen 
et al. 2012). Despite the large amount of data that points toward its 
importance as a major boundary in the Taiwan orogen, the detailed 
structure and kinematics of the Shuilikeng fault are not well 
known. Consequently, it has been interpreted in different ways; for 
example, as a layer-parallel thrust (the Chukou thrust of Suppe 
1981), as a steeply eastward-dipping thrust that extends to deep in 
the middle crust (the Shuichangliu fault of Wang et al. 2002, or the 
Tulungwan thrust of Rodriguez-Roa & Wiltschko 2010), as a 

westward-dipping displaced upper part of a pre-existing west-dip-
ping extensional fault (Yue et al. 2005), or as a steeply east-dip-
ping transpressional fault that penetrates well into the middle crust 
(Brown et al. 2012). Also, Wiltschko et al. (2010) linked it with 
the Chaochou fault in the south. Neither there is any consensus on 
whether the Shuilikeng fault is currently active, although recently 
Sung et al. (2000) and Yanites et al. (2010) have used river inci-
sion, channel morphology and stream gradients along several riv-
ers in central Taiwan to suggest that the Shuilikeng fault has been 
active throughout the Holocene. By comparing today’s stream gra-
dients with those from earlier mapping, Sung et al. (2000) further-
more suggested that it has been active during the last 80 years. 
Nevertheless, even with the large number of earthquakes around it 
(e.g. Wu et al. 2008a), seismicity or changes in global positioning 
system (GPS) velocities are generally not attributed to the Shui-
likeng fault (there are exceptions: Yue et al. (2005) and Bos et al. 
(2003), respectively), and no surface ruptures have been described 
from it.

Despite the uncertainties in whether or not the Shuilikeng fault 
is currently active, there are clear indications from the geological 
and geophysical data that it is a major structural boundary within 
the Taiwan mountain belt. Given the wide range of structural inter-
pretations noted above, it is also clear that more detailed studies of 
the fault are needed to advance our understanding of the structure 
and kinematics of this orogen. In this paper we present the results 
of new 1:25000 scale geological mapping and structural analysis 
along c. 100 km (a little less than one-half of its length) of the 
Shuilikeng fault in central Taiwan (Figs 1 and 2) that further define 
its map pattern, outcropping structure and kinematics. To help cor-
relate these outcrop data with the location and geometry of the 
Shuilikeng fault at depth we integrate them with a collapsed seis-
micity dataset derived from the relocated seismicity database of 
Wu et al. (2008a) updated to 2011. Our field kinematic data are 
augmented by 264 focal mechanism solutions derived from events 
along the Shuilikeng fault that help place further constraints on its 
kinematics and recent activity. Finally, we interpret the regional 
structure and kinematics of the Shuilikeng fault within the context 
of the Taiwan orogen.
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Abstract: For over 200 km along strike the Shuilikeng fault of Taiwan separates Miocene rocks of the West-
ern Foothills from the largely Eocene and Oligocene rocks of the Hsuehshan Range to the east. Despite its 
importance in the Taiwan mountain belt, the structure and kinematics of the Shuilikeng fault are not well 
known. Here, we present results from new geological mapping along 100 km of its strike length. At the sur-
face, the Shuilikeng fault is a steeply east-dipping brittle fault with a series of splays and bifurcations. Along 
its southern part, it cuts an earlier fold and fault system. Outcrop kinematic data vary widely, from thrusting to 
strike-slip. The surface data are integrated with a relocated and collapsed seismicity database to interpret the 
fault location at depth. These data indicate that the Shuilikeng fault can be traced to greater than 20 km depth. 
Some 260 focal mechanisms from this dataset indicate that its kinematics is overall transpressive. From a 
regional perspective, we interpret the Shuilikeng fault to reactivate a pre-existing rift-related basin-bounding 
fault to the east of which rocks in the Hsuehshan Range are being exhumed.
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Geological setting

The Taiwan orogen is forming as the result of the latest Miocene to 
present oblique collision that is taking place between the Luzon arc 
and the rifted margin of the SE part of Eurasia (Suppe 1984; Huang 
et al. 1997, 2000, 2006; Sibuet & Hsu 2004; Byrne et al. 2011). The 
resultant Taiwan mountain belt is divided into four roughly north–
south-oriented tectonostratigraphic zones that are separated by major 
faults (Fig. 1). From west to east, these zones are the Western 
Foothills, the Hsuehshan Range, the Central Range and the Coastal 
Range. The Western Foothills, Hsuehshan Range and Central Range 
are forming as the result of deformation and uplift of Eocene to 
Miocene sediments and older pre-rift continental margin rocks of 
Eurasia and the latest Miocene and younger synorogenic sediments of 
the foreland basin (e.g. Suppe 1980; Byrne et al. 2011; Brown et al. 
2012). In this paper, we discuss the Western Foothills, which structur-
ally form the frontal part of the mountain belt, and the adjacent 
Hsuehshan Range. The latter is a more strongly deformed and varia-
bly metamorphosed zone to the east (Fig. 1). The focus of this paper 
is the boundary between these two tectonostratigraphic zones, the 
Shuilikeng fault. Below we give a brief overview of the outcropping 

stratigraphy and structure of the Western Foothills and the Hsuehshan 
Range. Throughout the paper we follow the stratigraphic scheme and 
nomenclature of Brown et al. (2012).

In our study area in central Taiwan (Figs 1 and 2), the Western 
Foothills are formed by an imbricate thrust system involving latest 
Miocene to present synorogenic clastic sediments of the foreland 
basin that, in their easternmost part, are overthrust by Eocene to 
Miocene unmetamorphosed shallow-water clastic deposits of the 
Eurasian platform along the Shuangtung thrust (e.g. Suppe 1987; 
Ho 1988; Yue et al. 2005; Castelltort et al. 2011; Brown et al. 2012; 
Huang et al. 2013). The imbricate thrust system that forms the 
Western Foothills appears to be linked to a shallow, gently east-
dipping detachment developed near the top of the Miocene or at the 
base of the Pliocene synorogenic sediments (e.g. Suppe 1980, 1981; 
Ding et al. 2001; Carena et al. 2002; Yue et al. 2005; Brown et al. 
2012). For an alternative interpretation in which there is extensive 
basement involvement the reader should see, for example, 
Mouthereau & Petit (2003), Mouthereau & Lacombe (2006), 
Simoes et al. (2007) and Rodriguez-Roa & Wiltschko (2010). 
Eastward of the Shuilikeng fault, the Hsuehshan Range is made up 
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Fig. 1. Simplified geological map of the 
Taiwan mountain belt (modified after Chen 
et al. 2000). The locations of the study 
area in Figure 2 and of the crustal cross-
section in Figure 12 are shown. Contours 
offshore indicate the thickness (in km) of 
the Palaeocene to Miocene sediments in 
the basins (from Teng & Lin 2004). ChiF, 
Chinma fault; ChT, Chuanghua thrust; CT, 
Chelungpu thrust; LF, Lishan fault; LvF, 
Longitudinal Valley fault; SkF, Shuilikeng 
fault.
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Fig. 2. Geological map of the study area across the Shuilikeng fault in central Taiwan. The location of the map is indicated in Figure 1. The locations of 
the seismicity sections in Figure 10 (from A–A' to H–H') are shown in black. Fault abbreviations: AF, Alenkeng fault; ChF, Chiayang fault; GF, Guaosing 
fault; SkF, Shuilikeng fault; SF, Shenmu fault; ST, Shuangtung thrust; TT, Tili thrust. Fold abbreviations: CS, Chuangyuan syncline; GA, Guaosing 
anticline; HA, Hsiaoan anticline; LS, Lileng syncline; MA, Meitzulin anticline; TA, Tsukeng anticline; TiS, Tingkan syncline; TS, Tachiwei syncline; 
TaaS, Taanshan syncline; TahS, Tahenpingshan syncline.
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of variably metamorphosed Eocene clastic sediments that were 
deposited in the so-called Hsuehshan Basin during rifting of the 
Eurasian margin that are disconformably overlain by post-rift 
Oligocene shale and sandstone (Ho 1988; Huang et al. 1997; Lin 
et al. 2003; Teng & Lin 2004). Along much of the western part of the 

Hsuehshan Range, these rocks are weakly to moderately metamor-
phosed (Beyssac et al. 2007; Simoes et al. 2012) and, at least in the 
central part of the study area, they have been exhumed from between 
9.2 and 9.8 km depth (Sakaguchi et al. 2007). Eastward and south-
ward, however, in the hanging wall of the Tili thrust (Fig. 2), these 
rocks reach lower greenschist facies (Clark et al. 1993) and have a 
penetrative pressure solution cleavage (Clark et al. 1993; Tillman & 
Byrne 1995; Fisher et al. 2002, 2007; Brown et al. 2012).

The Shuilikeng fault at the surface

The Shuilikeng fault crops out poorly along most of its length, lim-
iting direct acquisition of data on its deformation mechanisms, 
geometry and kinematics. Therefore, the approach taken in this 
study was to collect field data along and across it to construct the 
regional map pattern (Fig. 2) and cross-sections (Fig. 3), as well as 
analyse bedding dips and fold axes (Fig. 4). Where possible, fault 
orientation and kinematic indicator data were taken (see below). 
We present local, detailed maps and serial cross-sections from two 
areas to compare and contrast the differences in structural style 
along the strike of the fault (Figs 5 and 6).

Regional map pattern

In central Taiwan, a pronounced system of nearly north–south-
oriented valleys clearly demarcates the contact between the 
Miocene rocks of the Western Foothills and the Eocene to 
Oligocene rocks of the Hsuehshan Range. This contact marks the 
surface trace of the Shuilikeng fault. The rectilinear map pattern 
of the fault, in which its trace cuts roughly straight across the 
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topography, suggests that at the surface it has a steep dip. Within 
the study area, there are also notable changes from north to south 
in the map pattern of the fault (Fig. 2). These changes take place 
across the Choshui River (Figs 2, 3 and 4).

To the north of the Choshui River, the regional structure is that of 
open, symmetric synclines and anticlines developed west of the 
Shuilikeng fault and asymmetric slightly west-verging folds to the 
east (Figs 2 and 3). At a larger scale (Fig. 5), in its hanging wall the 
Shuilikeng fault juxtaposes weakly metamorphosed Eocene and 
Oligocene rocks in the west-verging Hsiaoan anticline (HA in Fig. 2) 
against lower Miocene rocks in open to locally very tight synclines 
and anticlines in its footwall (see section I–I' in Fig. 3). The Hsiaoan 
anticline is non-cylindrical, with a vertical to slightly overturned 
forelimb and with a roughly WSW plunge along the Tachia River 
and a moderate SW plunge farther south (Fig. 4) where its hinge 
appears to merge with the Shuilikeng fault (Fig. 5). Folds in the 
hanging wall of the Shuilikeng fault are cut by several NE–SW-
striking faults. For example, the Alenkeng fault cuts the backlimb of 
the Hsiaoan anticline and places Eocene rocks on top of Oligocene 
(AF in Figs 2, 3 and 5). In this area, to the west of the Shuilikeng 
fault, the Tachiwei syncline and Guaosing anticline (TS and GA in 
Figs 2 and 5) form a gently north- and south-plunging (Fig. 4), tight 
fold pair that, locally, have a slight east vergence (Fig. 5). The 
Guaosing fault (GF in Figs 2, 3 and 5) cuts across the eastern limb of 

the Tachiwei syncline (Fig. 5), suggesting that it either post-dates, or 
is a late feature in the development of the fold pair. Southward, the 
southern limb of the Tingkan syncline (TiS in Fig 2) is overturned 
against the Shuilikeng fault and both limbs are cut by it, suggesting 
that it predates or records progressive deformation along the fault.

South of the Choshui River, the Shuilikeng fault takes on an 
anastomosing map pattern in which we can identify two fault-bound 
lenses of steeply west-dipping to locally overturned Miocene rocks 
(Figs 2 and 3). In this area, the Tili thrust (TT in Fig. 2) approaches 
and is cut by the Shuilikeng fault. This is especially apparent along 
the zhuogun River (Fig. 2) where the cleavage in the hanging wall 
of the Tili thrust is folded into an anticline whose forelimb directly 
abuts the Shuilikeng fault (Fig. 3, section III–III'). Where it abuts the 
Shuilikeng fault, the rocks in the Tili thrust sheet form a kilometre-
scale, tight, west-verging, overall NNE-plunging, anticline with a 
steep to slightly overturned forelimb and a ESE-dipping axial planar 
pressure solution cleavage (Fig. 4) (see sections III–III' and IV–IV' 
in Fig. 3, and section B–B' in Fig. 6). In thin section, we have 
observed rare, fine-grained biotite replacing chlorite along the 
cleavage planes, suggesting that these rocks are in greenschist 
facies, as indicated by Clark et al. (1993), Beyssac et al. (2007) and 
Sakaguchi et al. (2007). To the west, the Miocene rocks are unmeta-
morphosed and, adjacent to the fault, the structure is dominated by 
intense faulting and folding developed on a tens of metres scale 
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(Fig. 6) that, farther west, becomes a complex interaction of kilome-
tre-scale synclines and anticlines (Fig. 2) that are beyond the scope 
of this paper. In the area adjacent to the fault, folds are mildly non-
cylindrical but with a general shallow NNE–SSW plunge, and are 
mainly WNW-verging (Figs 4 and 6). A good example of this can 
be found in the Chenyulan River immediately south of the village of 
Dongpu (Fig. 6). Here, the Eocene Shihpachungchi Formation can 
be observed to directly overlie the Middle Miocene Shimen 
Formation. The Eocene rocks are strongly sheared and tightly folded 
into a west-verging anticline (Fig. 6, section B–B'). The Miocene 
rocks in the footwall form a zone of intense brittle faulting and fold-
ing of several hundred metres in width (Fig. 7). The majority of the 
faults are east-dipping and kinematic indicators such as slickenfi-
bres on slip surfaces and small bedding displacements indicate an 
overall top-to-the-west sense of movement, although we stress that 
the kinematics is highly variable (see the section on kinematics 
below). Fold geometries in this area are often very complex, as 
thick-bedded sandstone units display various degrees of brecciation 
and boundinage whereas more thin-bedded sandstone and shale 
units show disharmonic folding (Fig. 7).

Deformation mechanism and kinematics

In the kinematic analysis of fault-slip data, we adopted the approach 
of Marrett & Allmendinger (1990), which uses the linked Bingham 
distribution of the shortening and extension directions of a popula-
tion of faults to calculate the average incremental principal strain 

axes (i.e. average P and T axes), giving an average fault plane solu-
tion.

Where observed in the field, the Shuilikeng fault is everywhere 
a brittle feature composed of breccia and fault gouge (Fig. 8). Fault 
and slickenfibre orientation data from a number of locations along 
the Shuilikeng fault indicate senses of slip that range from thrust-
ing, to strike-slip, to extension. In several localities, slickenfibres 
developed on slip surfaces, small bedding displacements across 
discrete faults, and minor fold vergence indicate that all three 
senses of movement have taken place at different times in the same 
outcrop. Despite these local complexities, the averaged fault plane 
solutions indicate a nearly NW–SE to east–west average shortening 
direction (P axis in Fig. 9) along the length of the Shuilikeng fault. 
The T axes, however, range from steeply plunging to subhorizon-
tal, resulting in average fault plane solutions for single outcrops 
that range from thrusting to strike-slip (Fig. 9).

The Shuilikeng fault at depth

Fault location and geometry

On the basis of formation thicknesses, bedding dips, reflection seis-
mic data and standard cross-section construction techniques, Brown 
et al. (2012) have interpreted the location of the Shuilikeng fault at 
depth in the upper 10 km. For other interpretations in which the 
Shuilikeng fault (under different names) is interpreted to extend to 
10 km and beyond, the reader should see, for example, Wang et al. 
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Fig. 7. Sketch and photographs of the high-
strain zone developed within the Miocene 
that defines the Shuilikeng fault in the 
southernmost part of the map area along 
the Chenyulan River. The disharmonic 
folding of the thin-bedded sandstone and 
shale units and the brecciation of the thick-
bedded sandstone units should be noted. 
The approximate location of the sketch is 
indicated in Figure 6.
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(2000) and Rodriguez-Roa & Wiltschko (2010). Here, to interpret 
the location and geometry of the Shuilikeng fault below 10 km depth, 
we use the relocated seismicity database of Wu et al. (2008a; updated 
to 2011 in our study area) which contains events that range up to >7 
ML. In this paper, these data have been further processed using the 
collapsing technique of Jones & Stewart (1997), which involves the 
determination of statistical measurements for standard errors in the 
depth, latitude and longitude for each event and the clustering of 
events with overlapping error spheroids. These collapsed data were 
then plotted in a 3D volume and parallel vertical sections were cut 
10 km apart (Figs 2 and 10). Events were projected onto the sections 
from 4.99 km on either side to avoid having the same event on any 
two sections. The sections are confined to the upper 20 km of crust to 
avoid any interference with earthquakes that could be related to the 
Lishan fault (the structural boundary between the Hsuehshan Range 
and the Central Range; see, e.g. Lee et al. 1997).

The pattern of seismicity in the cross-sections varies signifi-
cantly from north to south across the study area (Fig. 10). In the 
northernmost part (sections A–A' and B–B'), the seismic events 
form a cloud from which we are unable to discriminate any fault 
zone. In the central part of the map area (sections C–C', D–D', 
E–E' and F–F'), however, there is a roughly horizontal open 
cluster of events at 10 km depth (detachment in Fig. 10) that 
nearly coincides with the location of the basal detachment 
beneath the Western Foothills (Carena et al. 2002; Yue et al. 
2005; Brown et al. 2012). At c. km 20, between c. 10 and 20 km 
depth, there is a large, tight cluster of hypocentres that dips c. 
45–50° eastward (SkF in Fig. 10). This east-dipping cluster of 
seismicity extends downward from the deep trace of the 
Shuilikeng fault defined in cross-section by Rodriguez-Roa & 
Wiltschko (2010) and Brown et al. (2012), or along its deep 
trace as defined by Wang et al. (2000). We therefore interpret 
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Fig. 8. Field photographs (their location 
is indicated in Fig. 9). (a) Splay of the 
Shuilikeng fault across the Tachia River 
in the northernmost part of the map area. 
(b, c) Complex fault zone (b) and fault 
breccia (c) that define the Guaosing fault. 
(d) Fault breccia and fault gouge of the 
Shuilikeng fault immediately south of the 
Choshui River. (Note slickenfibres on a 
minor fault surface within this breccia zone 
indicating a left-lateral strike-slip sense of 
movement.) (e, f) Fault breccia developed 
within the Shimen Formation that defines 
the Shuilikeng fault in the southernmost 
part of the map area, around Dongpu.
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the Shuilikeng fault to link with this cluster of events and to 
extend to at least 20 km depth. The extensive cloud of seismicity 
to the east of the surface location of the Shuilikeng fault and 
above its interpreted subsurface location, especially in sections 
C–C' and D–D', could possibly be related to the faults in the 
hanging wall of the Shuilikeng fault discussed above. Southward, 
in sections G–G' and H–H', the trace of the Shuilikeng fault is 
less clearly defined from the seismicity pattern, although it can 
still be interpreted to dip moderately eastward (Fig. 10).

Fault kinematics: earthquake focal mechanisms

To gain insight into the kinematics of the Shuilikeng fault at depth 
we have used the database of earthquake focal mechanisms of Wu 
et al. (2008b, 2010), updated to 2011 in our map area (Fig. 11). The 
264 events presented in Figure 11 have been relocated using the 3D 
velocity model of Wu et al. (2007, 2009) and then have been col-
lapsed using the method described in the previous section. In our 
analysis, the map area has been divided into three zones whose 
north–south extent were determined to coincide with the beginning 
of a clear east-dipping band of seismicity in the vertical sections 
(i.e. between sections B–B' and C–C', and F–F' and G–G'), and 
east–west to include what we interpret to be the extent of the 
Shuilikeng fault and the faults in its hanging wall at the surface 
(Fig. 11). These zones were then divided into four 5 km thick bins, 
to a depth of 20 km. The fault types (i.e. strike-slip, thrust, normal 
and other) derived from the focal mechanisms were calculated 
using the technique of zoback (1992), which takes into account the 
plunge of the P, B and T axes of each fault plane solution. To pro-
vide further information for the interpretation of the kinematics, all 
events within each 5 km thick bin were grouped together and the 
average principal strain axes were calculated using the method of 
Marrett & Allmendinger (1990) (Fig. 11). For the sake of brevity, 
below we describe only the average fault plane solutions.

In the northern part of the study area (area ‘a’ in Fig. 11), there 
are no data in the upper 5 km. In the bin from 5 to 10 km depth, 
the average P and T axes are roughly subhorizontal and trend 
NNW–SSE and ENE–WSW, respectively, resulting in a strike-
slip average fault plane solution. From 10 to 20 km depth, how-
ever, their trend changes, with the P axis remaining horizontal 
and trending NW–SE and the T axis becoming nearly vertical, 
giving a thrust average fault plane solution. In the central part of 
the map area (area ‘b’ in Fig. 11), again, there are no data in the 
first 5 km. In all three bins from 5 to 20 km depth, the average P 
axis is nearly horizontal and trend NW–SE, whereas the average 
T axis is vertical, giving a thrust average fault plane solution at 
all depths. Finally, in the southern part of the map area (area ‘c’ 
in Fig. 11), in the bin from 0 to 5 km depth, the average P and T 
axes are roughly subhorizontal and trend WNW–ESE and NNE–
SSW, respectively, giving a strike-slip average fault plane solu-
tion. However, from 5 to 15 km depth the T axis becomes 
vertical, resulting in a thrust average fault plane solution. There 
are not enough events in the 15–20 km bin to determine statisti-
cally meaningful principal strain axes.

Discussion

By combining surface geology and seismicity data, the Shuilikeng 
fault in central Taiwan can be interpreted to be a brittle fault that 
dips eastward and reaches more than 20 km depth (Fig. 12). For 
about 100 km along its strike-length the map pattern defined by the 
Shuilikeng fault (Fig. 2) is similar to that of other well-known 
transpressive to strike-slip fault systems (Wilcox et al. 1973; 
Sylvester 1988; Butler et al. 1998; Walcott 1998; Nicol & Van 
Dissen 2002; Kirkpatrick et al. 2008; Leever et al. 2011; Murphy 
et al. 2011; Dooley & Schreurs 2012). Along its southern end, it 
cuts an earlier fault and fold system, juxtaposing greenschist-facies 
rocks in its hanging wall (with a pressure solution cleavage) against 
unmetamorphosed rocks in its footwall. In the northern part, how-
ever, the relationships between the Shuilikeng fault and structures 
that splay off it are often ambiguous, although from the data given 
in the previous sections we interpret them to be coeval and linked. 
The constraints placed on the Shuilikeng fault dip and location in 
the subsurface by the surface geology (formation thickness and dip, 
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faults, folds etc.) allow it to be extrapolated to a depth of around 
10 km (Fig. 12). Although there are uncertainties in this extrapola-
tion, at 10 km depth it coincides with a cluster of east-dipping seis-
micity that extends to over 20 km depth (Fig. 12). We interpret this 
seismicity to be related to a steeply dipping fault whose upward 
trace projects to the Shuilikeng fault at the surface and, we think, is 
linked to it. Consequently, we interpret the Shuilikeng fault to be an 
active deep-seated main structure of the Taiwan orogen. Westward, 
a subhorizontal cluster of seismicity can be interpreted as the 
detachment to the imbricate stack mapped there, linking it to the 
thick-skinned deformation east of the Shuilikeng fault (Fig. 12). 
More work needs to be carried out to determine how this linkage 
works. Throughout our study area, the kinematics of the Shuilikeng 
fault is somewhat variable in the surface geological data, whereas 
the focal mechanism data more consistently indicate NW-directed 
shortening with strike-slip being active locally in the upper 10 km 
(Figs 9 and 11). Variability in the surface dataset is possibly the 
result of successive, overlapping ruptures, whereas variability in 
the focal mechanism data can, in part, be associated with minor 
faults. It might also be the result of mechanical decoupling between 
the kinematics of the fault core and that of the regional fault that 
has generated it, as suggested for other seismogenic faults (e.g. the 
San Andreas Fault; Chester et al. 1993). Both datasets are consist-
ent, however, with the overall kinematics of the roughly north–
south-striking Shuilikeng fault as being transpressive, with the 
hanging wall moving up toward the NW.

The Eocene rocks of the Hsuehshan Range have been interpreted 
by Teng et al. (1991), Huang et al. (1997) and Teng & Lin (2004) 
to be synrift sediments deposited in a graben or half-graben (the 
Hsuehshan Basin) on the continental margin of Eurasia. Those 
researchers further interpreted the Oligocene and Miocene rocks to 
be post-rift sediments deposited on the margin platform. Although 
there is a general consensus that the eastern bounding fault of the 
Hsuehshan Basin probably coincided with the current Lishan fault 
(Lee et al. 1997; Huang et al. 1997; Lin et al. 2003; Teng & Lin 
2004; Wiltschko et al. 2010), there is little consensus about the 
location or even the presence of a western bounding fault (for 
exceptions see Huang et al. 1997; Lee et al. 1997). However, for 
just over 200 km the Shuilikeng fault forms a structural boundary 
between predominantly Miocene rocks to the west and Eocene 
rocks of the Hsuehshan Basin to the east (in the north, Oligocene to 
Miocene rocks also appear; Fig. 1). We suggest, therefore, that the 
Shuilikeng fault, which at least in central Taiwan penetrates to 
20 km or more depth (and must, therefore, affect the basement), can 
be interpreted to be a major structure that formed along the western 
margin of the Hsuehshan Basin in the Eocene.

It has been shown that such pre-existing structures on a continen-
tal margin can play an important role in many aspects of the evolu-
tion of an orogen during mountain building (e.g. Wiltschko & 
Eastman 1983; Hatcher & Williams 1986; Laubscher 1987; Rodgers 
1987; Woodward 1988; Schmidt et al. 1988; Narr & Suppe 1994; 
Butler et al. 1997; Pérez-Estaún et al. 1997; Brown et al. 1999). For 
example, their reactivation may lead to the inversion of pre-existing 
rift basins and to the uplift of the synrift rocks and their basement 
(Bonini et al. 2012, and references therein). How the shortening in 
central Taiwan is resolved to form single faults and fault systems is 
in general complex (e.g. Bos et al. 2003; Gourley et al. 2007; 
Mouthereau et al. 2009; Wu et al. 2010; Ching et al. 2011) and, in 
many cases, conditioned by the presence of pre-collisional rift 
basins that were present on the Eurasian margin (e.g. Wu et al. 
1997; Mouthereau et al. 2002; Mouthereau & Lacombe 2006; 
Hwang et al. 2007; Byrne et al. 2011; Brown et al. 2012). Faults 
bounding the basins around the Peikang Basement High (see Teng 
et al. (1991), Teng & Lin (2004) and Byrne et al. (2011) for an 
overview of this feature) (Fig. 1), with their significant amount of 
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seismic activity, are an important example of how this mechanism 
of reactivation of pre-existing basin faults can affect the structural 
development of the mountain belt (Rau & Wu 1995; Mouthereau 
et al. 2002; Mouthereau & Lacombe 2006; Wu et al. 2007; Byrne 
et al. 2011; Chi 2012; Mirakian et al. 2012). In central Taiwan, the 
Shuilikeng fault forms part of this fault system, although how it 
interacts with many of the other faults around the Peikang Basement 
High is still not completely understood. Nevertheless, our data sug-
gest that this part of the Shuilkeng fault is currently active and that 
the western margin of the Hsuehshan Basin is being inverted and 
exhumed along it. Several researchers have shown that P-wave 
velocities also increase eastward across the Shuilikeng fault (Kim 
et al. 2005, 2010; Lin 2007; Wu et al. 2007; Kuo-Chen et al. 2012). 
If we assume that the Eocene rocks in the Hsuehshan Range are 
synrift, then the pre-rift Mesozoic basement beneath them should be 
being exhumed to be within a few kilometres of the surface and 
these rocks should have higher P-wave velocities. This interpreta-
tion is partly corroborated by the thermal data of Sakaguchi et al. 
(2007), who suggested that the Eocene rocks to the east of the 
Shuilikeng fault have been exhumed from c. 10 km depth, which 
would be in agreement with basement rocks reaching the shallow 
subsurface in this part of the Hsuehshan Range. This interpretation 
is also supported by the surface geology (e.g. rock ages, structural 
style, amount of deformation, level of exhumation), the significant 
increase in the number and the deeper crustal level of seismic events 
to the east of the fault and, eastward, higher P-wave velocities at 
shallower depths (Wang et al. 2000; Kim et al. 2005, 2010; Beyssac 
et al. 2007; Lin 2007; Sakaguchi et al. 2007; Simoes et al. 2007, 
2012; Wu et al. 2007; Yamato et al. 2009; Brown et al. 2012; Kuo-
Chen et al. 2012). Based on these data, the regional-scale structure 
of the Hsuehshan Range in the study area can be interpreted to be a 
basement-cored anticlinorium (Brown et al. 2012; see also Clark 
et al. 1993, for discussion of it as a ‘pop-up’ structure) (Fig. 12). The 
highest structural and topographic level that the basement reaches in 
central Taiwan is over 3000 m above sea level, to the east in the 
Central Range (see fig. 13 of Brown et al. (2012) for a regional 
interpretation of this structure).

Conclusions

We show that in central Taiwan the Shuilikeng fault is a brittle 
fault along the western limit of the outcropping Oligocene and 
Eocene rocks of the Hsuehshan Range. Although kinematic data 
collected from outcrops along the fault show a degree of variabil-
ity, when combined with an extensive focal mechanism dataset 
from within the hypocentre cluster, the overall fault mechanism is 
clearly transpressive. In its southern part it clearly cuts the Tili 
thrust and the Tingkan syncline. Northward, however, the rela-
tionships between faults and folds splaying off the Shuilikeng 
fault are not so clear, although they appear to be related to the 
transpressive deformation taking place in its hanging wall. On the 
basis of geometrical constraints used for regional cross-section 
construction (Fig. 12), the surface trace of the Shuilikeng fault can 
be extrapolated to c. 10 km depth where, in the central part of our 
study area, it coincides with an east-dipping cluster of seismicity. 
We interpret this cluster of earthquake hypocentres to project from 
greater than 20 km depth, upward along the Shuilikeng fault to its 
location at the surface. As a consequence we interpret the fault to 
be active. This hypocentre cluster may link with a subhorizontal 
cluster to the west, beneath the imbricate stack of the Western 
Foothills, but our data provide no clues as to how this entire sys-
tem works kinematically or mechanically. More work needs to be 
carried out to clarify this. In a regional context, the Shuilikeng 
fault can be interpreted to be reactivating a pre-existing fault that 

was along the western boundary of the Hsuehshan Basin, inverting 
the basin and causing uplift and exhumation of the Eocene synrift 
rocks and most probably its underlying basement.
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