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Abstract. Earthquake size can be described with different
magnitudes for different purposes. For example, local mag-
nitudeML is usually adopted to compile an earthquake cat-
alog, and moment magnitudeMw is often prescribed by a
ground motion model. Understandably, when inconsistent
units are encountered in an earthquake analysis, magnitude
conversion needs to be performed beforehand. However, the
conversion is not expected at full certainty owing to the
model error of empirical relationships. This paper introduces
a novel first-order second-moment (FOSM) calculation to es-
timate the annual rate of earthquake motion (or seismic haz-
ard) on a probabilistic basis, including the consideration of
the uncertain magnitude conversion and three other sources
of earthquake uncertainties. In addition to the methodol-
ogy, this novel FOSM application to engineering seismol-
ogy is demonstrated in this paper with a case study. With
a local ground motion model, magnitude conversion rela-
tionship and earthquake catalog, the analysis shows that the
best-estimate annual rate of peak ground acceleration (PGA)
greater than 0.18g (induced by earthquakes) is 0.002 per
year at a site in Taipei, given the uncertainties of magnitude
conversion, earthquake size, earthquake location, and motion
attenuation.

1 Introduction

The size of earthquakes can be portrayed with different mag-
nitudes, such as local magnitudeML and moment magnitude
Mw. For example, the 1999 Chi-Chi earthquake in Taiwan

reportedly had a local magnitude of 7.3 and a moment mag-
nitude of 7.6. Understandably, the difference is attributed to
definitions and measurements. For local magnitudeML , it
is based on the largest amplitude on a Wood–Anderson tor-
sion seismograph installed at a station 100 km from the earth-
quake epicenter (Richter, 1935). In contrast, moment magni-
tudeMw is related to the seismic moment of earthquakes, the
product of fault slips, rupture areas, and the shear modulus
of the rock (Keller, 1996).

Nowadays, local magnitudeML is commonly adopted by
earthquake monitoring agencies, mainly because the mea-
surement is relatively straightforward and its indication to
the shaking of buildings is robust (Kanamori and Jennings,
1978). For example, an earthquake catalog complied by the
Central Weather Bureau Taiwan is on anML basis (e.g.,
Wang et al., 2011). On the other hand, moment magnitude
Mw that is not subject to the so-called magnitude saturation
is commonly adopted in the developments of ground motion
models, for a more precise ground motion prediction (Wu et
al., 2001; Campbell and Bozorgnia, 2008; Lin et al., 2011).

Some empirical models have been suggested for magni-
tude conversion (Das et al., 2012; Wu et al., 2001). For ex-
ample, based on the earthquake data around Taiwan, Wu et
al. (2001) suggested an empirical relationship betweenML
andMw as follows:

ML = 4.53× ln(Mw) − 2.09± 0.14, (1)

where the term±0.14 is the standard deviation of model
error ε. (Based on the fundamentals of regression analysis,
the mean value ofε is zero, and it is a random variable fol-
lowing the normal distribution.) In a recent earthquake study
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for Taiwan (Wang et al., 2013a), this empirical relationship
was adopted for magnitude conversion when the units in the
earthquake catalog and ground motion model were different.
However, it is worth noting that those conversions were per-
formed on a “deterministic” basis disregarding the influence
of model errorε. For example, givenML = 6.5, the determin-
istic estimate for moment magnitude is presented by a single
value in Mw = 6.66, in contrast to a probabilistic estimate
(shown in Fig. 1) displaying the probability distribution of
Mw, considering the uncertainty of conversion or the model
error of the empirical relationship.

This study aims to consider this additional source of un-
certainty to estimate the annual rate of earthquake motion
(or seismic hazard) on a probabilistic basis. Instead of fol-
lowing a representative method, this study adopts the first-
order second-moment (FOSM) calculation for solving the
problem. In addition to the FOSM algorithms detailed in
this paper, a case study was performed to demonstrate this
novel FOSM application to engineering seismology. This pa-
per also includes an overview of probabilistic analysis, prob-
abilistic seismic hazard analysis (PSHA), etc., and the reason
for adopting the FOSM calculation over an existing method
for the targeted problem.

2 Overviews of probabilistic analysis, deterministic
analysis, PSHA, and DSHA

2.1 Probabilistic analysis and deterministic analysis

Probabilistic analysis or deterministic analysis is a general
concept for solving a problem on a probabilistic or determin-
istic basis. In other words, the two are applicable to many
subjects, from social science to earthquake engineering. The
key difference between probabilistic analysis and determinis-
tic analysis can be demonstrated with the following example:
given Y = A + B (whereY , A, andB are all random vari-
ables), a deterministic analysis aims to find the mean value
of Y with the mean values ofA andB but without consid-
ering their variability. By contrast, when both mean values
and standard deviations (SDs) ofA andB are taken into ac-
count to solve the mean and SD ofY , the calculation is then
referred to as probabilistic analysis.

It is worth noting that the analytical solution for proba-
bilistic analysis is usually non-existent when the function of
random variables becomes more complex, even for a simple
function like Y = logA + B, whereA and B are both ran-
dom variables uniformly distributed from 0 to 10. For solving
such a problem, alternatives such as Monte Carlo simulation
(MCS), first-order second-moment (FOSM), and point esti-
mate method are more applicable. For example, by randomly
generating 5000A andB values and substituting them into
the governing equation, one can obtain a series ofY values.
Accordingly, such an MCS (sample size= 5000) shows that
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Fig. 1. An example showing the conversion from ML to Mw on a probabilistic basis 
Fig. 1. An example showing the conversion fromML to Mw on a
probabilistic basis.

the SD ofY is around 3 for this problem based on 5000 MCS
samples.

On the other hand, the problem can be solved with dif-
ferent computations than MCS. For example, the FOSM cal-
culation estimates that the SD ofY for the same problem is
equal to 2.94, close to the estimate from MCS. As a result,
it is the nature of probabilistic analysis to have different so-
lutions (close to each other) depending on how the computa-
tion is performed, especially when the analytical solution is
not available.

2.2 Two representative seismic hazard analyses:
PSHA and DSHA

Before introducing seismic hazard analysis, it is worth clar-
ifying the definition of earthquake hazard or seismic haz-
ard. Instead of referring to casualty or economic loss, as the
word “hazard” might implicate, seismic hazard is related to
an earthquake ground motion or its annual rate. For exam-
ple, deterministic seismic hazard analysis (DSHA) would es-
timate the seismic hazard of peak ground acceleration (PGA)
equal to 0.3g at the site, and probabilistic seismic haz-
ard analysis (PSHA) would suggest the rate of PGA> 0.3g

around 0.01 per year.
With a number of case studies reported (e.g., Cheng et al.,

2007; Stirling et al., 2011; Wang et al., 2013a), DSHA and
PSHA should be the two representative approaches to seis-
mic hazard assessment nowadays. In terms of algorithms,
DSHA estimates the seismic hazard given a worst-case earth-
quake size and location, and PSHA evaluates the annual rate
of ground motion with the consideration of the uncertain-
ties of earthquake size, location, and attenuation (Kramer,
1996). In the industry, DSHA has been prescribed by Cali-
fornia since the 1970s as the underlying approach to the de-
velopment of earthquake-resistant designs (Mualchin, 2011).
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On the other hand, a recently implemented technical guide-
line prescribes the use of PSHA for designing critical struc-
tures under earthquake conditions (US Nuclear Regulatory
Commission, 2007).

Nevertheless, it is worth noting that the two analyses
are associated with a specific algorithm, rather than a gen-
eral framework that probabilistic analysis and deterministic
analysis present. As a result, it is understood that “proba-
bilistic analysis applied to seismic hazard assessment” is a
framework, in contrast to a specific algorithm (see the Ap-
pendix) like probabilistic seismic hazard analysis or the Cor-
nell method. A recent study using a new algorithm to esti-
mate the annual rate of earthquake motion should further ex-
plain the difference between the two (Wang et al., 2012a).
With the same purpose to estimate seismic hazard by con-
sidering earthquake uncertainties in different ways, both the
new approach and the conventional PSHA are part of proba-
bilistic analysis to solve the specific problem of engineering
seismology. This instance is an analog to the demonstration
that was just shown: a probabilistic analysis aiming to esti-
mate the SD ofY governed byY = logA + B can be solved
with MCS, FOSM, or a few other probabilistic analyses.

Understanding that PSHA presents a specific algorithm,
one comes to realize the possibility of applying other com-
putations such as FOSM to seismic hazard assessment as this
paper will detail in the following. To avoid confusion, this pa-
per refers to PSHA as the Cornell method (Cornell, 1968) to
differentiate it from other probabilistic approaches to earth-
quake hazard assessment. The reason for not extending the
Cornell method for the targeted problem of this study is dis-
cussed later in this paper.

3 Methodology

3.1 Overview of FOSM

As previously mentioned, FOSM is one of the common
methods to solve the problem of many different subjects. For
example, Na et al. (2008) adopted the FOSM calculation to
evaluate the influence of variability in the soil’s friction angle
and shear modulus on the structure’s performance. Kaynia et
al. (2008) utilized a FOSM framework to estimate the site’s
vulnerability to landslide with a few sources of uncertainty
taken into account, and Jha and Suzuki (2009) used FOSM
to evaluate the potential of soil liquefaction on a probabilis-
tic basis. The instance may go on and on, and the message
behind it is that the FOSM approach is commonly accepted
nowadays for performing a probabilistic computation.

3.2 FOSM algorithms and computations

From the title of the method, one could expect that the Tay-
lor expansion plays an important role in FOSM (Hahn and
Shapiro, 1967). Take the simple case ofY = g(X) for exam-
ple (X andY are random variables). The Taylor expansion

up to the first-order term against constantµX (i.e., the mean
value of X) can be expressed as follows (Ang and Tang,
2007):

Y = g(X) ≈ g(µX) + (X − µX)g′(µX), (2)

whereg′
=

dg
dX

. To derive the mean value ofY , Eq. (2) can be
written as the following equation, whereE denotes the mean
value:

E [Y ] ≈ E
[
g(µX) + (X − µX)g′(µX)

]
. (3)

SinceµX is a constant, Eq. (3) can be rewritten as

E [Y ] ≈ g(µX) + g′(µX)E [X] − µXg′(µX). (4)

Given E [X] = µX, two terms on the right-hand side of
Eq. (4) are canceled out, so that the mean value ofY is ap-
proximated tog(µX).

Similar derivation can be applied to derive the variance
of Y . (Variance is the square of standard deviation.) From
Eq. (2), the variance ofY (denoted asV [Y ]) can be approxi-
mated as follows:

V [Y ] ≈ V
[
g(µX) + (X − µX)g′(µX)

]
. (5)

Since the variance of constants is equal to zero, the vari-
ance ofY is as follows:

V [Y ] ≈ V
[
X g′(µX)

]
= V [X] g′(µX)2

= σ 2
X g′(µX)2, (6)

whereσX is the standard deviation ofX.
The same derivation based on the Taylor expansion can

be followed and applied to a more complicated case ofY =

g(Xis). For such a function of multiple random variables,
the mean and variance ofY related to those ofXis can be
expressed as follows (Ang and Tang, 2007):

E [Y ] ≈ g (E [X1] ,E [X2] , · · · ,E [Xn]) (7)

and

V [Y ] ≈

n∑
i=1

[(
∂g

∂Xi

)2

V [Xi ]

]

+ 2
n∑

i=1

n∑
j=1

(
∂g

∂Xi

∂g

∂Xj

Cov(Xi, Xj )

)
; for i < j, (8)

wheren denotes the number ofXis, and Cov is the covari-
ance between two variables. For the case that any of two
input variables are independent of each other (covariance is
zero when two variables are independent), the variance ofY

can be approximated as follows:

V [Y ] ≈

n∑
i=1

[(
∂g

∂Xi

)2

V [Xi ]

]
. (9)
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As a result, the expressions shown in Eqs. (7)–(9) are the
underlying FOSM algorithms for performing a probabilistic
analysis.

Since the following case study is a computer-aided anal-
ysis, for advancing the calculation of Eq. (9) in a computer,
the finite difference approximation of the derivative was fol-
lowed in this study (US Army Corps of Engineers, 1997).
TakingX1 for example, ∂g

∂X1
can be approximated as follows:

∂g

∂X1
=

g(µ1 + σ1, µ2, · · · ,µn) − g(µ1 − σ1, µ2, · · · ,µn)

2σ1
, (10)

whereµ1 andσ1 denote the mean and SD ofX1, respectively.

3.3 The governing equations of this study

The governing equation of this study is related to a ground
motion prediction equation. Because the following case
study is about a site in Taiwan, we directly used a local
ground motion model used in recent earthquake studies for
Taiwan (Cheng et al., 2007; Wang et al., 2013a) to derive the
governing equation:

lnPGA= − 3.25+ 1.075Mw

− 1.723ln(D + 0.156exp(0.624Mw)) + εM, (11)

whereD denotes the source-to-site distance in km;εM is the
model error, whose standard deviation was reported at 0.577
(mean= 0). From Eq. (11), it should be understood that PGA
is a variable governed by three variables (Mw, D andεM) or
their uncertainty.

It must be noted that this model requires moment magni-
tudeMw to describe the size of earthquakes. Since the input
seismicity (described later) is inML , magnitude conversion
is needed to match the unitMw prescribed by the ground
motion model. To complete the conversion, the relationship
betweenML andMw shown in Eq. (1) was combined with
Eq. (11), so that the governing equation of this study be-
comes

lnPGA= g (ML,D, ε,εM)

= −3.25+ 1.075exp

(
ML + 2.09+ ε

4.53

)
− 1.723ln

(
D + 0.156exp(

0.624exp

(
ML + 2.09+ ε

4.53

)))
+ εM . (12)

Understandably, lnPGA or PGA is now governed by four
random variables, includingε of magnitude conversion.
Next, the FOSM computations (Eqs. 7–10) are utilized to
solve the governing equation (Eq. 12) to obtain the mean and
SD of PGA, given those of four variables (ML,D, ε, andεM)

appearing in the governing equation.
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Fig. 2. A schematic diagram showing the PGA exceedance proba-
bility given its probability distribution.

3.4 Exceedance probability, earthquake rate, the rate of
seismic hazard

In addition to the mean and SD, a suitable probability model
is needed to develop the probability density function (PDF)
of a random variable. To the best of our knowledge, earth-
quake ground motion such as PGA is considered a vari-
able following the lognormal distribution (Kramer, 1996), or
lnPGA follows a normal distribution. With the three pieces
of information, the PDF of PGA can be developed and the
probability PGA exceeding a given valuey* can be calcu-
lated with the fundamentals of probability (Ang and Tang,
2007):

Pr(PGA> y∗) = Pr(lnPGA> lny∗)

= 1− Pr(lnPGA≤ lny∗)

= 1− 8

(
lny ∗ −µlnPGA

σlnPGA

)
, (13)

where8 denotes the cumulative density function of a stan-
dard normal distribution (mean= 0 and SD= 1); µlnPGA and
σlnPGA are the mean and standard deviation of lnPGA from
solving the governing equation (i.e., Eq. 12). For a better
illustration of the calculation of exceedance probability, a
schematic diagram is shown in Fig. 2.

Like the Cornell method, the rate of earthquake occur-
rences (v) is taken into account in this analysis to estimate the
annual rate of a given PGA exceedance, denoted asλPGA>y∗.
Following the representative Cornell method (see the Ap-
pendix), the algorithm of this step is simply the product of
earthquake rate and exceedance probability:

λPGA>y∗ = v × Pr(PGA> y∗), (14)
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Fig. 3. A chart summarizing the FOSM application of this study to earthquake hazard 
assessment 
 
 
 
 
 

Develop the governing equation (i.e., Eq. 12) from 
a local ground motion model and magnitude (i.e., 

Eq. 11) conversion relationship (i.e., Eq. 1) 

Find the analytical inputs (Table 1) from the 
seismicity.  Solve the governing equation with 
FOSM (i.e., Eqs. 7 ~ 9) to estimate mean and 

variance of PGA

Calculate the exceedance probability 
Pr(PGA > y*) with simple probability calculation 

(i.e., Eq. 13) 

Combine earthquake rate v and exceedance 
probability to estimate the annual rate of 
earthquake ground motions (i.e., Eq. 14) 

Fig. 3. A chart summarizing the FOSM application of this study to
earthquake hazard assessment.

where the earthquake ratev can be estimated from a given
seismicity, and exceedance probability Pr(PGA> y*) can be
obtained with the procedure that was just described.

3.5 Seismicity-based earthquake hazard analysis

Like a recent seismicity-based analysis (Wang et al., 2012a),
this study also estimates the annual rate of earthquake motion
with the statistics of “major earthquakes” around the site,
which are referred to as relatively large earthquakes occur-
ring within a given distance (e.g., 200 km) from the site. In
other words, such an analysis is mainly governed by the ran-
domness of the so-called major earthquakes observed in the
past 110 yr. It is worth noting that the analytical presumptions
about magnitude and distance thresholds are also needed by
the Cornell approach, like a PSHA study using a magnitude
threshold ofML = 5.5 and a distance threshold of 150 km
(Wang et al., 2013a).

Since the two thresholds are the only two engineering
judgments needed, such a seismicity-based method is more
transparent and repeatable – the key criteria for the so-called
robust seismic hazard analysis (more discussion is given in
Sect. 5.2). Take seismic hazard studies for Taiwan as an ex-
ample: a recent discussion pointed out that one assessment
was hardly repeatable, owing to the involvements of exces-
sive engineering judgments (Wang et al., 2012b).

Fig. 4.The seismicity around Taiwan since 1900, based on a catalog
containing around 57 000 records.

3.6 The summary of this FOSM analysis

Figure 3 shows a flowchart summarizing this novel FOSM
application to earthquake hazard analysis. The first step is to
extract the analytical inputs from a given earthquake catalog,
followed by solving the mean and SD of lnPGA, or PGA, in
the governing equation. The next step is to calculate PGA ex-
ceedance probabilities with simple probability calculations,
followed by adding the earthquake rate to estimate the an-
nual rate of seismic hazard.

In addition to magnitude and distance thresholds, another
presumption adopted in this analysis is the independence
between earthquake variables, which is also assumed and
employed in the representative Cornell method. However, it
could be possible that large earthquakes tend to recur in some
regions, or earthquake size and location are somewhat corre-
lated. As a result, more studies should be worth conducting
to examine the independence of earthquake variables, for jus-
tifying existing earthquake analyses using such an “indepen-
dent” presumption without tangible support.

4 Case study

4.1 Earthquake geology and the seismicity around
Taiwan

The region around Taiwan is close to the boundary of
the Philippine Plate and Eurasian Plate. Such a tectonic
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Fig. 5. The large earthquakes aboveML = 6.0 within a distance of
200 km from the study site in Taipei.

environment gave birth to the island of Taiwan. Report-
edly this orogeny process started around 4 million years ago
(Suppe, 1984), and with a plate convergence rate at about
8 cm yr−1 as of now (Yu et al., 1997), the tectonic activ-
ity around Taiwan should still be active. Such a geological
background is the underlying cause of the high seismicity
in this region with about 18 000 earthquakes detected every
year (Wu et al., 2008). On the other hand, a few catastrophic
events (e.g., the 1906 Meishan earthquake, the 1999 Chi-Chi
earthquake) have struck the island and have caused severe
casualties.

Figure 4 shows the seismicity around Taiwan since 1900
from an earthquake catalog containing around 57 000 events.
It is worth noting that this catalog has been analyzed for
a variety of earthquake studies, from earthquake hazard as-
sessment (Wang et al., 2013a), to earthquake engineering re-
lease (Huang and Wang, 2011), to earthquake statistics study
(Wang et al., 2011, 2013b). Understandably, the catalog is
not complete for small events. For example, it was pointed
out that events aboveML = 3.0 in this catalog were com-
plete after year 1978. Only events aboveML = 5.5 could be
considered complete after 1900.

4.2 The seismic hazard at a site within Taipei

A case study for a site within Taipei, the most important city
in Taiwan, was performed with this novel FOSM applica-
tion. As the summary of this FOSM seismic hazard analysis
(Fig. 3), we first extracted major earthquakes around the site
from the given seismicity. Figure 5 is an example showing
the locations of earthquakes aboveML = 6.0 within a dis-
tance of 200 km from the site. From the 147 events since
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Fig. 6. The expected PGA distribution at the study site, conditional
to a randomML > 6.0 event within 200 km from the site.

1900, the mean values and standard deviations of magni-
tude areML = 6.44 and 0.46, and they are 129 and 39 km
for source-to-site distance. Table 1 summarizes the inputs for
the analysis, including earthquake rates, magnitude/distance
thresholds, and the uncertainties (ε andεM) of two empirical
equations.

With the input data and the governing equation (Eq. 12),
the mean and standard deviation of PGA are equal to 0.016g

and 0.022g following the FOSM calculations. That is, as
anML ≥ 6.0 event occurs PGA is expected to have a mean
value= 0.016g and SD= 0.022g at this site, given the ran-
domness of earthquake size and location, and the uncertain-
ties or model errors of two empirical relationships. Along
with the presumption that PGA follows a lognormal distri-
bution as previously mentioned, Fig. 6 shows its probability
density function for this scenario. Accordingly, the probabil-
ity PGA exceeding 0.15g is around 0.4 %. With earthquake
ratev = 1.34 per year, the rate for PGA> 0.15g is around
0.005 per year at this site. Such a calculation can be repeated
for other ground motion levels to establish a hazard curve as
shown in Fig. 7.

4.3 Sensitivity study and the logic-tree analysis

The analysis that was just demonstrated is related to a
specific boundary condition (i.e.,m0 = ML = 6.0 andd0 =

200 km), the best engineering judgments that earthquakes
with a smaller size or a farther location should not cause
damage to structures. (As previously mentioned, such en-
gineering judgments are inevitable for a comparable anal-
ysis regardless of the methodology used.) To address such
uncertainty, three analyses with different thresholds were
performed, followed by a logic-tree analysis (or weight-
averaged) to obtain the best-estimate seismic hazard like
other studies (e.g., Cheng et al., 2007; Wang et al., 2013a). It

Nat. Hazards Earth Syst. Sci., 13, 2649–2657, 2013 www.nat-hazards-earth-syst-sci.net/13/2649/2013/
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Table 1.Summary of the FOSM analyses for earthquake hazard assessment.

Scenario Threshold
Earthquake Magnitude Distance Conversion Error Model Error PGA

(ML , km)
Frequency (ML ) (km) εM ε (g)

Since 1900 Annual Rate Mean SD Mean SD Mean SD Mean SD Mean SD

1 (6.0, 200) 147 1.34 6.436 0.463 129.5 39.1 0 0.14 0 0.577 0.016 0.022
2 (6.0, 150) 101 0.92 6.428 0.467 110.6 31.2 0 0.14 0 0.577 0.020 0.026
3 (5.5, 150) 309 2.81 5.917 0.459 109.6 29.5 0 0.14 0 0.577 0.016 0.019
4 (5.5, 100) 108 0.98 5.903 0.444 75.7 18.7 0 0.14 0 0.577 0.009 0.012
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Fig. 7. The sensitivity analysis on the magnitude and distance thresholds and the best-
estimate hazard curve for the site with a logic-tree analysis accounting for such 
uncertainty in the analysis 
 

Fig. 7. The sensitivity analysis on the magnitude and distance
thresholds and the best-estimate hazard curve for the site with a
logic-tree analysis accounting for such uncertainty in the analysis.

is also worth noting that the four scenarios or boundary con-
ditions of this study were previously adopted in recent seis-
mic hazard studies for Taiwan (Wang et al., 2012a, 2013a).

The sensitivity analysis is summarized in Table 1, with
Fig. 7 showing the hazard curves for each of the four sce-
narios. With an equal weight assigned to each scenario in
the logic-tree analysis, the best-estimate hazard curve is
also shown in Fig. 7. For example, the occurrence rate for
PGA> 0.18g was estimated at 0.002 per year. At the same
annual rate, we found that this PGA of exceedance (i.e.,
0.18g) is comparable to those summarized in a PSHA study
for Taiwan (Cheng et al., 2007), reporting a range from
0.15g to 0.3g given different source models used.

5 Discussions

5.1 The reason for not extending the existing approach
to this study

The so-calledb value calibrated with seismicity is needed
for the Cornell method to calculate the magnitude distribu-
tion (see the Appendix). However, like this study, when dif-
ferent units are encountered in the given earthquake catalog
and ground motion models adopted, magnitude conversion

b-value on Mw basis
after converting

Mw = f(ML) = f(a)

ML = a

Given: Mw = f(ML) + ε

b-value on ML basis
from seismicity in ML
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Fig. 8. A schematic diagram illustrating a procedure to obtain a b-value on an Mw basis 
from given seismicity in ML    
 
 
 
 
 
 
 
 
 
 

Fig. 8. A schematic diagram illustrating a procedure to obtain a
b value on anMw basis from given seismicity inML .

must be performed beforehand. Figure 8 is a schematic dia-
gram showing a possible procedure to obtain theb value on
anMw basis, converted from theML-basedb value. Under-
standably, this conversion simply applied an empirical model
(e.g., Eq. 1) to each data point in the logN -M diagram (i.e.,
Fig. 8), then calculating the slope of converted data points.

However, this conversion is considered a deterministic
procedure, because the model error is irreverent to the con-
version, or the slope of converted data point is independent
of the model error. In other words, when one uses the Cornell
method for seismic hazard assessment and encounters the is-
sue of inconsistent units, such an exercise cannot account for
the uncertainty of magnitude conversion. This dilemma we
encountered then motivated this study aiming to use a new
approach to solving the problem of interest: a probabilis-
tic earthquake hazard assessment considers the uncertainty
of magnitude conversion, in addition to uncertain earthquake
size, location, and motion attenuation.

5.2 Recent discussions on seismic hazard analysis

Although seismic hazard analysis is considered a viable
solution to seismic hazard mitigation, some discussion
over its methodological robustness has been reported (e.g.,
Castanos and Lomnitz, 2002; Bommer, 2003; Krinitzsky,

www.nat-hazards-earth-syst-sci.net/13/2649/2013/ Nat. Hazards Earth Syst. Sci., 13, 2649–2657, 2013
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2003; Mualchin, 2011). Mualchin (2005) commented that no
seismic hazard analysis should be perfect without challenge,
given our limited understanding of the random earthquake
process. Moreover, Kluegel (2008) considered that the key
to a robust seismic hazard study is a transparent and repeat-
able process, regardless of methodology.

Like this study, we can expect that more derivatives and
algorithms will be developed for estimating earthquake haz-
ards in different ways. In the meantime, unless the seismic
hazard estimate (e.g., the rate of PGA> 0.2g = 0.001 per
year) can be verified with field evidence or repeatable testing,
we should acknowledge that no seismic hazard assessment is
perfect, and that the merit of seismic hazard research should
largely reflect its scientific originality, but not by whether or
not it follows the state of the practice, given that the virtues of
research are to challenge or to create the state of the practice.

6 Conclusion

Earthquake magnitude can be portrayed in different units
such as local magnitude and moment magnitude. When the
issue of inconsistent units is encountered in an earthquake
analysis, the magnitude conversion is needed beforehand.
But owing to the model error of empirical relationships, it
is understood that the conversion is not at full certainty.
This study presents a novel application of first-order second-
moment to the problem targeted in this study: a probabilistic
earthquake hazard assessment considers the uncertain mag-
nitude conversion in addition to three other sources of earth-
quake uncertainties. Besides the FOSM algorithm detailed
in this paper, a case study was also performed to demonstrate
this robust FOSM analysis for earthquake hazard studies. The
case study shows, for example, that the rate of PGA> 0.18g

is 0.002 per year at a site in Taipei, given the statistics of ma-
jor earthquakes extracted from anML-based earthquake cat-
alog since 1900, and the model errors of aMw-based ground
motion model and magnitude conversion relationship.

Appendix A

The algorithm of the Cornell method

The algorithm of the Cornell method (i.e., PSHA) is as fol-
lows (after Kramer, 1996):

λ(Y > y∗) =

NS∑
i=1

vi

NM∑
j=1

ND∑
k=1

Pr
[
Y > y∗

|mj ,dk

]
×Pr

[
M = mj

]
× Pr[D = dk], (A1)

whereNS is the number of seismic sources;NM andND are
the number of data bins in the magnitude and distance proba-
bility functions, respectively;v denotes earthquake rate. Note
that the calculation of probability such as Pr

[
M = mj

]
in

the governing equation indicates that the calculation is per-
formed on a probabilistic basis.

Acknowledgements.We appreciate the editor and reviewers for
their valuable comments and suggestions that made this paper
much better in many aspects. We also appreciate the suggestions
and discussions with Y. K. Tung of HKUST during this study.

Edited by: F. Masci
Reviewed by: G. De Luca and one anonymous referee

References

Ang, A. H. S. and Tang, W. H.: Probability Concepts in Engineer-
ing: Emphasis on Applications to Civil and Environmental Engi-
neering, 2nd Edn., John Wiley & Sons, Inc., NJ, 2007.

Bommer, J. J.: Uncertainty about the uncertainty in seismic hazard
analysis, Eng. Geol., 70, 165–168, 2003.

Campbell, K. W. and Bozorgnia, Y.: NGA ground motion model for
the geometric mean horizontal component of PGA, PGV, PGD
and 5 % damped linear elastic response spectra for periods rang-
ing from 0.01s to 10s, Earthq. Spectra., 24, 139–171, 2008.

Castanos, H. and Lomnitz, C.: PSHA: is it science?, Eng. Geol., 66,
315–317, 2002.

Cheng, C. T., Chiou, S. J., Lee, C. T., and Tsai, Y. B.: Study on
probabilistic seismic hazard maps of Taiwan after Chi-Chi earth-
quake, J. GeoEng., 2, 19–28, 2007.

Cornell, C. A.: Engineering seismic risk analysis, Bull. Seismol.
Soc. Am., 58, 1583–1606, 1968.

Das, R., Wason, H. R., and Sharma, M. L.: Magnitude conversion to
unified moment magnitude using orthogonal regression relation,
J. Asian. Earth. Sci., 50, 44–51, 2012.

Hahn, G. J. and Shapiro, S. S.: Statistical Models in Engineering,
Wiley, NY, 1967.

Huang, D. and Wang, J. P.: Earthquake energy release in Taiwan
from 1991 to 2008, The 24th KKCNN Symposium on Civil En-
gineering, Hyogo, Japan, 477–480, 2011.

Jha, S. K. and Suzuki, K.: Reliability analysis of soil liquefaction
based on standard penetration test, Comput. Geotech., 36, 589–
596, 2009.

Kanamori, H. and Jennings, P. C.: Determination of local magni-
tude, ML , from strong motion accelerograms, Bull. Seismol. Soc.
Am., 68, 471–485, 1978.

Kaynia, A. M., Papathoma-Köhle, M., Neuhäuser, B., Ratzinger,
K., Wenzel, H., and Medina-Cetina, Z.: Probabilistic assessment
of vulnerability to landslide: application to the village of Licht-
enstein, Baden-Württemberg, Germany, Eng. Geol., 101, 33–48,
2008.

Keller, E. A.: Environmental Geology, 7th Edn., Prentice Hall, NJ,
1996.

Kluegel, J. U.: Seismic hazard analysis – Quo vadis?, Earth-Sci.
Rev., 88, 1–32, 2008.

Kramer, S. L.: Geotechnical Earthquake Engineering, Prentice Hall
Inc., NJ, 1996.

Krinitzsky, E. L.: How to combine deterministic and probabilistic
methods for assessing earthquake hazards, Eng. Geol., 70, 157–
163, 2003.

Nat. Hazards Earth Syst. Sci., 13, 2649–2657, 2013 www.nat-hazards-earth-syst-sci.net/13/2649/2013/



J. P. Wang et al.: A first-order second-moment calculation for seismic hazard assessment 2657

Lin, P. S., Lee, C. T., Cheng, C. T., and Sung, C. H.: Response spec-
tral attenuation relations for shallow crustal earthquakes in Tai-
wan, Eng. Geol. 121, 150–164, 2011.

Mualchin, L.: Seismic hazard analysis for critical infrastructures in
California, Eng. Geol., 79, 177–184, 2005.

Mualchin, L.: History of modern earthquake hazard mapping and
assessment in California using a deterministic or scenario ap-
proach, Pure. Appl. Geophys., 168, 383–407, 2011.

Na, U. J., Chaudhuri, S. R., and Shinozuka, M.: Probabilistic as-
sessment for seismic performance of port structures, Soil. Dyn.
Earthq. Eng., 28, 147–158, 2008.

Richter, C. F.: An instrumental earthquake scale, Bull. Seismol. Soc.
Am., 25, 1–32, 1935.

Stirling, M., Litchfield, N., Gerstenberger, M., Clark, D., Bradley,
B., Beavan, J., McVerry, G., Van Dissen, R., Nicol, A., Wal-
lace, L., and Buxton, R.: Preliminary probabilistic seismic hazard
analysis of the CO2CRC Otway Project Site, Victoria, Australia,
Bull. Seismol. Soc. Am., 101, 2726–2736, 2011.

Suppe, J.: Kinematics of arc-continent collision, flipping of sub-
duction, and back-arc spreading near Taiwan, Mem. Geol. Soc.
China., 6, 21–33, 1984.

US Army Corps of Engineers: Engineering and Design: Introduc-
tion to Probability and Reliability Methods for Use in Geotechni-
cal Engineering, Technical Letter, No. 1110-2-547, Department
of the Army, Washington, DC, 1997.

US Nuclear Regulatory Commission: A Performance-based Ap-
proach to Define the Site-specific Earthquake Ground Motion,
Regulatory Guide 1.208, Washington, DC, 2007.

Wang, J. P., Chan, C. H., and Wu, Y. M.: The distribution of an-
nual maximum earthquake magnitude around Taiwan and its ap-
plication in the estimation of catastrophic earthquake recurrence
probability, Nat. Hazards., 59, 553–570, 2011.

Wang, J. P., Chang, S. C., Wu, Y. M., and Xu, Y.: PGA distributions
and seismic hazard evaluations in three cities in Taiwan, Nat.
Hazards., 64, 1373–1390, 2012a.

Wang, J. P., Brant, L., Wu, Y. M., and Taheri, H.: Probability-based
PGA estimations using the double-lognormal distribution: in-
cluding site-specific seismic hazard analysis for four sites in Tai-
wan, Soil. Dyn. Earthq. Eng., 42, 177–183, 2012b.

Wang, J. P., Huang, D., Cheng, C. T., Shao, K. S., Wu, Y. C., and
Chang, C. W.: Seismic hazard analysis for Taipei City including
deaggregation, design spectra, and time history with Excel appli-
cations, Comput. Geosci., 52, 146–154, 2013a.

Wang, J. P., Huang, D., Chang, S. C., and Wu, Y. M.: New ev-
idence and perspective to the Poisson process and earthquake
temporal distribution from 55,000 events around Taiwan since
1900, Nat. Hazards. Rev. ASCE, doi:10.1061/(ASCE)NH.1527-
6996.0000110, 2013b.

Wu, Y. M., Shin, T. C., and Chang, C. H.: Near real-time mapping
of peak ground acceleration and peak ground velocity following
a strong earthquake, Bull. Seismol. Soc. Am., 91, 1218–1228,
2001.

Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., and Nakamura,
M.: A Comprehensive Relocation of Earthquakes in Taiwan
from 1991 to 2005, Bull. Seismol. Soc. Am., 98, 1471–1481,
doi:10.1785/0120070166, 2008.

Yu, S. B., Chen, H. Y., Kuo, L. C., Lallemand, S. E., and Tsien, H.
H.: Velocity field of GPS stations in the Taiwan area, Tectono-
physics, 274, 41–59, 1997.

www.nat-hazards-earth-syst-sci.net/13/2649/2013/ Nat. Hazards Earth Syst. Sci., 13, 2649–2657, 2013

http://dx.doi.org/10.1061/(ASCE)NH.1527-6996.0000110
http://dx.doi.org/10.1061/(ASCE)NH.1527-6996.0000110
http://dx.doi.org/10.1785/0120070166

