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Abstract Since the year 1973, more than 54,000 Mw C 3.0 earthquakes have occurred

around Taiwan, and their magnitude–frequency relationship was found following with the

Gutenberg–Richter recurrence law with b value equal to 0.923 from the least-square cal-

culation. However, using this b value with the McGuire–Arabasz algorithm results in some

disagreement between observations and expectations in magnitude probability. This study

introduces a simple approach to optimize the b value for better modeling of the magnitude

probability, and its effectiveness is demonstrated in this paper. The result shows that the

optimal b value can better model the observed magnitude distribution, compared with two

customary methods. For example, given magnitude threshold = 5.0 and maximum mag-

nitude = 8.0, the optimal b value of 0.835 is better than 0.923 from the least-square

calculation and 0.913 from maximum likelihood estimation for simulating the earthquake’s

magnitude probability distribution around Taiwan.
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1 Introduction

Earthquake prediction is controversial given our limited understanding of the uncertain

earthquake process (Geller et al. 1997; Mualchin 2005). Some practical solutions including

seismic hazard analysis and earthquake early warning are employed for earthquake hazard

mitigations (Geller et al. 1997; Wu and Kanamori 2005, 2008; Wang et al. 2012a). Proba-

bilistic Seismic Hazard Analysis (PSHA), referred to as the Cornell–McGuire method

(Cornell 1968; McGuire and Arabasz 1990), is one of the representative methods for seismic

hazard assessment. Many PSHA case studies have recently been conducted (Anbazhagan

et al. 2009; Sokolov et al. 2009; Mezcua et al. 2011; Rafi et al. 2012; Wang et al. 2013), and

technical references are now prescribing the use of PSHA for developing earthquake-resistant

designs for critical structures (U.S. Nuclear Regulatory Commission 2007).

The purpose of PSHA is to account for the uncertainties of earthquake magnitude,

location and motion attenuation (Kramer 1996). As a result, the magnitude probability

distribution is one of the PSHA’s inputs. Nowadays, the McGuire–Arabasz (M–A) algo-

rithm (1990) is the customary approach to develop such a magnitude function. (The

mathematical expressions of this algorithm are detailed in one of the following sections.)

For instance, using b values equal to 0.8 and 1.0, the magnitude probability distributions

from a PSHA benchmark example are shown in Fig. 1 (Kramer 1996). These distributions

account for the magnitude uncertainty in the PSHA calculations.

The M–A algorithm is a function of the b value, which is the slope in the Gutenberg–

Richter (G–R) relationship, a regression model between the logarithm of earthquake rate

(log kM�m� ) and magnitude of exceedance (m*). (More details about the G–R recurrence

law are also given later.) The b value or the slope can be obtained with the fundamentals of

regression analysis governed by the least-square (LS) algorithm. Another option for esti-

mating the b value is to use maximum likelihood estimation (MLE) (Weichert 1980).

Apart from its applications, the b value alone does not contain clear physical meaning to

earthquake physics. Statistically speaking, a region with b value = 0.5 has a higher per-

centage of large earthquakes compared to a region with b value = 1.0. But what causes

b value = 0.5 in this region is difficult to explain. Further research should be pursued to

develop a better understanding of earthquake physics and the G–R recurrence law, as well

as the possible physical indications of the b value to earthquakes, but it is not within the

scope of this study.

This study aims to present a new procedure to calibrate the b value for better modeling

of magnitude probability distributions with the customary M–A algorithm. We used the

earthquake data around Taiwan as an example to demonstrate this new procedure, with two

customary b value calculations also employed for comparison.

2 Gutenberg–Richter recurrence law

The Gutenberg–Richter (G–R) recurrence law was first proposed with earthquake data

from California (1944). It suggests a linear correlation between log kM [ m� and m* from

regression analyses:

logðkM�m� Þ ¼ a� bm� ð1Þ

where a and b (also known as the a value and b value) are referred to as the G–R

recurrence parameters.
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Figure 2 shows the locations of more than 54,000 Mw C 3.0 earthquakes, which have

occurred since the year 1973 around Taiwan, approximately within the region bound by lon-

gitude 119�E to 123�E and latitude 21.5�N to 25.5�N. The largest magnitude recorded was

around Mw 7.95, so that the maximum magnitude used in the following calculations was taken as

8.0. This seismicity or earthquake catalog has been employed previously for earthquake statistics

studies, including the probability distribution of the annual maximum earthquake (Wang et al.

2011), the probability distribution of PGA (Wang et al. 2012b), and the earthquake’s temporal

distribution around Taiwan (Wang et al. 2013). More attributes of this catalog, such as mag-

nitude thresholds and declustering methods, were also detailed in those previous studies.

Figure 3 shows the G–R relationship for the seismicity around Taiwan, with a value and

b value equal to 5.831 and 0.923, respectively, given a magnitude increment of 0.5

employed. The model’s R2 is 0.996, validating the effectiveness of using this empirical

relationship for earthquakes around Taiwan.

Nevertheless, the regression model is not a perfect fit to earthquake data. For example,

at m* = 3.0, the observed mean annual rate is higher than the model’s prediction, and the

situation is opposite at m* = 5.0 (see Fig. 3). To be more specific, at m* = 3.0, the

model’s prediction of log kM� 3:0is equal to 3.062 (=5.831–0.923 9 3), less than 3.166
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Fig. 1 b values and magnitude
probability distributions in a
benchmark PSHA example:
a Seismic Source A with
m0 = 4.0 and mmax = 7.3, and
b Seismic Source B with
m0 = 4.0 and mmax = 7.7. Note
that the magnitude distributions
were calculated with the
McGuire–Arabasz algorithm
given in Eq. 3
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from observation. After ‘‘de-log’’, the observed and expected annual rates are 1,466 and

1,153 per year. It is somewhat surprising to see this substantial difference given a nearly

perfect regression model (R2 = 0.996) between log kM�m� and m*. But owing to the nature

of mathematics, after performing ‘‘de-log’’ on logðNM�m� Þ, the difference between

observed and expected NM�m� can be substantially amplified.

3 Magnitude probability distribution

McGuire and Arabasz (1990) developed the magnitude probability function utilizing the

concept of conditional probability, later becoming a customary method used in earthquake-

related analyses, such as PSHA, when the uncertainty of earthquake magnitude is taken into

account (Kramer 1996). The purpose of this development is to calculate the ratio of earth-

quakes of interest (i.e., m1�M\m2) to total earthquakes (i.e., m0�M\mmax), as follows:

Prðm1�M\m2jm0�m1;m2�mmaxÞ ¼
Nðm1�M\m2Þ

Nðm0�M\mmaxÞ
; ð2Þ

where m0 and mmax are referred to as magnitude threshold and maximum magnitude.

Combining Eqs. 1 and 2, the calculation of magnitude probability becomes:

Prðm1�M\m2jm0�m1;m2�mmaxÞ ¼
10a�bm1 � 10a�bm2

10a�bm0 � 10a�bmmax

¼ 10�bm1 � 10�bm2

10�bm0 � 10�bmmax

ð3Þ

As a result, the M–A algorithm is governed by a single b value. With m0 = 4,

mmax = 8, and b = 0.923 calibrated from the earthquake data with the LS calculation,

120 121 122 123

22

23

24

25

120 121 122 123

22

23

24

25

Three major cities 
           in Taiwan

Taipei

L
at

it
u

d
e 

(0 N
)

Longitude (0E)

Kaohsiung

Taichung

Fig. 2 Spatial distribution of
more than 54,000 Mw C 3.0
earthquakes around Taiwan since
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Fig. 4 shows the expected and observed magnitude distributions. The model prediction and

observation are found in a good agreement. To quantify the level of fitting, we calculated

the v2 value from the following expression (Ang and Tang 2007; Devore 2008):

v2 ¼
Xn

i¼1

ðei � oiÞ2

ei

; ð4Þ

where n is the number of data points; ei and oi are the expected and observed values of the

i-th data point in the regression. In this case (Fig. 4), the v2 value is calculated at 0.012.

Note that a lower v2 value indicates a better curve fitting between prediction and

observation.

4 b value through maximum likelihood estimation

The other customary procedure to estimate the b value is through maximum likelihood

estimation (MLE). Assuming earthquake occurrence in time follows the Poisson model, the

likelihood function was developed with observed earthquakes. Then, the MLE b value can

be determined by solving this likelihood function. Following the numerical procedure

suggested by Weichert (1980), the MLE b value was calculated at 0.994 for the same

seismicity. With it, Fig. 5 shows the fitting between the model’s prediction and the same

observational data. Compared to the LS b value of 0.923, the MLE b value of 0.944

improves the fitting by approximately 20 %.

5 The new optimal b value for the modeling of magnitude probability

We propose a procedure to search for a better b value that can further improve the

modeling of magnitude probability distributions from the same M–A algorithm (i.e.,

3 4 5 6 7 8

-1

0

1

2

3

4

Magnitude of exceedance, m*

Logλ
M > m*

 = 5.831 - 0.923 x m*

R2 = 0.996
L

o
g

ar
it

h
m

 o
f 

m
ea

n
 a

n
n

u
al

 r
at

e,
 lo

g
λ

M
>m

*

Fig. 3 The Gutenberg–Richter empirical relationship for the seismicity around Taiwan (Fig. 2); note that
the mean annual rate was calculated with the total events divided by the duration of observation
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Eq. 3). The procedure used is simply trial-and-error. With a series of b values being tested,

the one accompanying the lowest v2 value is considered the optimal value. Fig. 6 shows

the optimizing with the bowl-shaped distribution between b values, and v2 values for the

case shown in Figs. 4 or 5. An optimal b value indeed comes to existence at the trough of

the curve with a minimized v2 value. Likewise, Fig. 7 shows the fitting between obser-

vation and expectation with the optimal b value = 0.975, which provides another 5 percent

improvement for this curve fitting over the use of the MLE b value of 0.944.
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Fig. 4 Observed and expected magnitude probabilities with the least-square (LS) b value of 0.923.
Throughout the magnitude range from 4.0 to 8.0, the level of fitting characterized by the v2 value is equal to
0.012 (the lower the value, the better the fitting.)
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Fig. 5 Observed and expected magnitude probabilities with the MLE b value of 0.994. Throughout the
same magnitude range as Fig. 4, the v2 value was reduced to 0.0095, from 0.012 using the LS b value of
0.923
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6 Parametric study

The results demonstrated in Figs. 4, 5, 6, 7 are under a specific boundary condition, i.e.,

m0 = 4.0 and mmax = 8.0. Following the same analysis, we conducted parametric studies

given three more boundary conditions (different magnitude thresholds with the same

maximum magnitude of 8.0), and the respective results are shown in Fig. 8. Similarly, the

optimal b value pertaining to the lowest v2 value can be found on the curves. Although in

some cases (e.g., Fig. 8a), the optimal value is very close to the LS or MLE value, it fits the

observation better than the two regardless. Figure 9 shows the magnitude probability

distributions with three different b values given these magnitude thresholds, and Table 1

summarizes the parameters for each case.
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Fig. 6 Relationship between
b values and v2 values fitting the
observed magnitude probability
distribution (Figs. 4 or 5).
Regardless of the level of
difference, the optimal b value of
0.975 is associated with the
minimized v2 value
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Fig. 7 Observed and expected magnitude probabilities with the optimal b value of 0.975; the v2 value was
further decreased to 0.009, better than using LS or MLE b value (Figs. 4 and 5)
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Figure 10 shows the empirical relationship between the magnitude thresholds and

optimal b values from the four analyses. The correlation between the two variables follows

a second-order polynomial regression with R2 of 0.996:

b ¼ 0:819þ 0:180m0 � 0:035m2
0 � 0:01 ð5Þ

where the error term ±0.01 denotes the model’s standard deviation. As the G–R law, this

empirical model suggests a best-fit correlation between the two variables from earthquake

data around Taiwan, without indicating the physical relationship between them. The

purpose of such an empirical relationship is to provide a fast estimate of b values for a

better simulating of earthquake magnitude distributions around Taiwan, given a magnitude

threshold of interest.

It is understood that there are many other combinations in the magnitude threshold and

maximum magnitude, but such an optimization is applicable to any set of boundary

conditions. In other words, the purpose of using those m0 and mmax values in the dem-

onstrations is to help describe and explain the problem targeted in this study.
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7 Conjugate a value

With the optimal b value being calibrated, its conjugate a value can be back-calculated

with the observed annual rate, denoted as ~N. Reorganizing Eq. 1, the optimal a value (aopt)

becomes

logð ~NM�m0
Þ ¼ aopt � boptm0

) aopt ¼ logð ~NM�m0
Þ þ boptm0

ð6Þ

As a result, the conjugate pair can match the observed rate ~NM�m0
through the G–R law,

because it is exactly used for this back calculation. Figure 11 shows the predicted and

Table 1 Summary of a values, b values, and the corresponding v2 values in the modeling of the observed
magnitude probability distributions

Methods Parameters/values Magnitude threshold m0

4.0 4.5 5.0 5.5

Least square a value 5.831 5.831 5.831 5.831

b value 0.923 0.923 0.923 0.923

v2 value 0.012 0.032 0.094 0.217

MLE a value 6.080 5.954 5.687 5.088

b value 0.994 0.965 0.913 0.803

v2 value 0.009 0.034 0.091 0.151

New procedure a value 6.00 5.77 5.30 4.79

b value 0.975 0.925 0.835 0.750

v2 value 0.009 0.032 0.080 0.137
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Fig. 10 The empirical relationship between optimal b values and magnitude thresholds, providing a fast
estimate of b values to better modeling of the observed magnitude probability distribution around Taiwan,
given a magnitude threshold of interest
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observed annual earthquake rates for the four demonstrations. Using the least-square

parameters, the predicted rates are different from observation. On the other hand, the

conjugate algorithm matched to the observed rate as the boundary condition was used to

solve the conjugate a value.

8 Discussions

8.1 Which b value should be adopted?

Input characterization is critical when it comes to an analysis. When input values are the

products of curve fitting without physical laws applied, it is preferred to use the one that

can fit the observation the best. With this in mind, we will choose the optimal b value to

calculate magnitude probability distributions, and use the conjugate value to compute

annual earthquake rates. But for a study specifically prescribing the G–R law to describe a

magnitude–frequency relationship like Fig. 3, we will employ the least-square b value

because, by the nature of mathematics, there is not a single set of values that can out-

perform the least-square parameters in regression analysis. Therefore, the selection of the

b value is dependent on the application.

8.2 Advanced empirical magnitude probability functions

The M–A algorithm is a single-parameter function. As far as a single-parameter function is

concerned, its performance in simulating earthquake magnitude distributions is considered

satisfactory. However, we will not be surprised by the arrivals of other functions, probably

with multiple parameters, outperforming this single-parameter algorithm in the modeling

of magnitude probability distributions. The bottom line is, when better models are avail-

able, we will not hesitate to use them.

8.3 Computational simplicity

The least-square regression should be the easiest method among the three to calibrate the

recurrence parameters. For the MLE approach and the new procedure, both are tedious in

computations, generally requiring in-house computer codes for the analysis. But
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understandably, it should be much easier to develop a computer tool for executing this

straightforward procedure, in comparison with the computer program to calculate the

b value with MLE.

8.4 Sensitivity study of b value in PSHA

Figure 12 shows the hazard curves for a benchmark PSHA example as mentioned previ-

ously (Kramer 1996). With b values increased from 0.8 to 1.0, the seismic hazard or the

annual rate of ground motion decreases because of the changes in magnitude distributions

(Fig. 1). For Seismic Source A, the hazard ratio using the two b values can be as high as

3.0 for a hazard level of PGA [ 0.8 g, although basically there is no difference for

PGA [ 0.01 g. The same outcome was observed for Seismic Source B, with the ratio even

higher (around 3.5) when the lower b value (=0.8) was used.

Understandably, the changes of b values would affect PSHA calculations, but their

influence should be on a case-by-case basis, depending on other inputs such as ground

motion models, maximum magnitudes, magnitude thresholds, and site locations. As a

result, it is hard to propose a general picture about the influence of the b value on PSHA.

But logically speaking, when there is a simple method available for calibrating input

parameters, we will use it to improve the analysis although the result might not be too
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Fig. 12 Sensitivity study of
b values on hazard curves given a
benchmark PSHA example; a for
Seismic Source A and b for
Seismic Source B (see Fig. 1 for
the respective magnitude
probability distribution for the
b values used)
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different at the end. Likewise, as for the b value, it is a logical option for us to use the

proposed method to calibrate it for PSHA studies, because it improves the modeling of

observed magnitude probability distributions with a simple procedure.

9 Conclusions

This paper introduces a new approach to optimize the b value to fit the magnitude prob-

ability distribution calculated with the McGuire–Arabasz algorithm. The new method is

simply a trial-and-error procedure, and its effectiveness was demonstrated in this paper

with the earthquake data around Taiwan. More importantly, four demonstrations all show

that the optimal b value can offer a better fit to the observed magnitude distributions than

values obtained with the least-square computation and maximum likelihood estimation.
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