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INTRODUCTION
In an arc-continent collision orogeny such as 

that of Taiwan, the development of a foreland 
fold-and-thrust belt depends, among other fac-
tors, on the thickness profi le of the subducting 
margin crust, the presence and size of the rift 
basins within it, and the geometry of the plat-
form and slope sedimentary sequences prior to 
collision (Brown et al., 2011; Harris, 2011). The 
response of these primary factors to the defor-
mation is determined, to a large degree, by the 
rheology of the crust, the orientation of the rift 
basins and their bounding faults relative to the 
plate convergence vector, and the convergence 
rate (Sibson, 1995; Poblet and Lisle, 2011).

Many foreland fold-and-thrust belts world-
wide (Rodgers, 1990; Poblet and Lisle, 2011) 
include a deformed sedimentary cover of a rift-
ed continental margin (Fig. 1A) that is detached 
above the underlying basement (basement is de-
fi ned here as any pre-rift rocks), often within or 
at the base of the lowermost postrift sediments, 
to form what is termed a thin-skinned thrust 
system (e.g., Poblet and Lisle, 2011) (Fig. 1B). 
In a thin-skinned thrust system the expected 
distribution of seismicity would be a narrow, 
subhorizontal cluster of events around the basal 
detachment (Ni and Barazangi, 1984; Carena 
et al., 2002), scattered events along individual 
faults above it, and rare events below it where 
rocks are thought to undergo little deformation 
(Davis et al., 1983; Dahlen et al., 1984). In this 
scenario, only in the interior part of the moun-
tain belt, where rocks are exhumed along deeply 
penetrating faults, should any notable increase 

in the seismic velocities at shallow depths be 
expected. If, however, the inherited rift-related 
basin-bounding faults are reactivated, the defor-
mation will penetrate deeper parts of the crust, 
causing the synrift sediments and the underly-
ing basement to be uplifted and exhumed (Jack-
son, 1980) in what is termed basin inversion, 
or thick-skinned deformation (e.g., Poblet and 
Lisle, 2011) (Fig. 1C). In areas undergoing ba-
sin inversion, seismicity can be expected to take 
place along the reactivating rift-related faults 
and display steeply inclined hypocenter clus-
ters that possibly extend into the middle and 
even lower crust (Jackson, 1980; Okada et al., 
2007; Sibson, 2009). The uplift of deeply buried 
sediments and basement will result in increased 
seismic velocities closer to the surface.

Determining the deformation mode of a fore-
land fold-and-thrust belt is important for identi-
fying fault source when assessing seismic haz-
ard in an area, and therefore in developing risk 
models and management protocols for seismic 
risk within this part of the orogen (Loh et al., 
1991; Campbell et al., 2002; Cheng et al., 2007). 
Furthermore, an accurate structural model also 
provides information on the expected geometry 
of faults, which is an important factor in hazard 
modeling because the dip of a fault can greatly 
infl uence the magnitude of an earthquake along 
it, with steeper dips resulting in higher magni-
tude events (Cheng et al., 2007).

In this paper we combine geological data with 
earthquake hypocenters and a three-dimensional 
(3-D) P-wave velocity model to determine the 
structure beneath the Hsuehshan Basin in central 

Taiwan. We fi nd that a model in which preex-
isting, rift-related extensional faults that bound 
the basin are being reactivated and inverted bet-
ter fi ts the available data than does a structural 
model in which there is a shallow, through-going 
basal detachment (e.g., Carena et al., 2002; Yue 
et al., 2005).

GEOLOGICAL BACKGROUND
The rifted continental margin of southeast 

Eurasia has been colliding with the Luzon arc 
of the Philippine Sea plate since at least the 
Late Miocene, resulting in the Taiwan orogen 
(Sibuet and Hsu, 2004). This part of the Eur-
asian continental margin contains a number of 
Eocene rift basins (Lin et al., 2003; Teng and 
Lin, 2004; Yang et al., 2006); the sediments of 
the Eocene Hsuehshan Basin currently occupy a 
signifi cant part of the Taiwan orogen (Lin et al., 
2003) (Fig. 2A). The basin is bound to the west 
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Figure 1. Evolution from rifted continen-
tal margin to foreland fold-and-thrust belt. 
In this fi gure, plane strain is assumed. A: 
Idealized rifted continental margin. B: Thin-
skinned deformation style: rift-related faults 
are inactive and only sedimentary cover of 
A is involved in deformation. C: Basin inver-
sion (or thick-skinned deformation) style: 
rift-related faults are reactivated and cause 
deepening in level of deformation.

ABSTRACT
On 27 March 2013, a 6.2 ML earthquake occurred at 19 km depth in eastern Nantou, central 

Taiwan. Over a 2 week period it was followed by more than 680 aftershocks that ranged to 5 
ML. Most events occurred below the ~10-km-deep detachment fault predicted for this part of 
the mountain belt, coinciding with other precisely located hypocenters that indicate that much 
of the crust in this area is seismically active. We combine geological data with a three-dimen-
sional (3-D) P-wave velocity model derived from local tomography and earthquake hypocen-
ters to determine a model for the structure of central Taiwan. Much of the surface geology of 
the area comprises the uplifted Eocene rocks of the Hsuehshan Basin. The 3-D P-wave velocity 
model shows a shallowing of higher velocities across the Hsuehshan Basin and hypocenter 
data indicate that its western bounding fault is clearly defi ned by an eastward-dipping band 
of events that extends to >20 km depth. The eastern bounding fault is interpreted to coincide 
at depth with a cluster of events between 20 and 30 km depth. These data suggest that the pre-
existing, rift-related extensional faults of the Hsuehshan Basin are currently being reactivated 
and the basin is being inverted. We present hypocenter data from the Nantou sequence that 
corroborate this interpretation and show the importance of choosing the correct structural 
model when assessing seismic risk.
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by the Shuilikeng fault and to the east by the 
Lishan fault. The synrift sediments of these ba-
sins are overlain by Oligocene to Late Miocene 
postrift platform and slope sediments that can 
be as much as several kilometers thick and are 
variably deformed within the orogen. The onset 
of synorogenic deposition might have begun as 
early as the latest Miocene, and continues today. 
The sedimentary package within the foreland 
basin can reach 6 km or more in thickness, and 
the deformation front is within it.

The Eocene synrift rocks of the Hsueh shan 
Basin now occupy topographically higher ground 
and structurally overlie Pleistocene rocks of the 
foreland basin along the Shuilikeng fault (Brown 
et al., 2012; Camanni et al., 2013) (Fig. 2B). This 
suggests that inversion of the Hsuehshan Basin 
is taking place and that the synrift sediments and 
their underlying basement rocks are being up-
lifted and exhumed (Clark et al., 1993; Brown et 
al., 2012).

BASIN INVERSION
To test the hypothesis that inversion of the 

Hsuehshan Basin is taking place, we use a 3-D 
P-wave velocity model revised from Wu et al. 
(2007), and earthquake hypocenters that have 
been relocated using this model (e.g., Wu et al., 
2008), which we collapse using the methodol-
ogy of Jones and Stewart (1997) (Fig. 3A). We 
then add the geologically determined fault inter-
pretation (Fig. 3B) in order to evaluate whether 
ongoing seismic activity is consistent with a 
shallow detachment or requires inversion of 
deep-seated rift-related extensional faults that 
bound the Hsuehshan Basin.

From km 0 to roughly the Shuilikeng fault 
at km 30, the P-wave velocities in all 3 sections 
of Figure 3 display an ~8-km-thick low-velocity 
zone that correlates well with the Miocene and 
younger postrift and synorogenic sediments. 

Eastward, this low P-wave velocity zone shal-
lows, and higher velocities appear closer to the 
surface (with minor complications in section 
C-C′). The shallowing of higher P-wave veloc-
ity material to the east of the Shuilikeng fault 
(SkF in Fig. 3) is clearly indicated by the 5.5 km 
s–1 isovelocity line, which we interpret to be the 
top of the low-grade metasedimentary basement 
clastics intersected in boreholes in western Tai-
wan (Chiu, 1975; Shaw, 1996). This shallow 
high-velocity zone is a robust feature that has 
been recognized in a number of other studies, 
regardless of the method of tomographic inver-
sion (Rau and Wu, 1995; Kim et al., 2005, 2010; 
Lin, 2007; Kuo-Chen et al., 2012).

All 3 sections display east-dipping clusters 
of hypocenters between approximately km 30 
and 50, and ~10–20 km depth. Particularly in 
sections B-B′ and C-C′, this cluster projects to 
the surface at the mapped location of the Shui-
likeng fault (Fig. 3) and, in section B-B′, joins 
westward with a thin, subhorizontal cluster of 
hypocenters that marks the location of the basal 
detachment known to be in this area (Carena et 
al., 2002; Yue et al., 2005; Brown et al., 2012), 
forming a linked fault system. In sections B-B′ 
and C-C′, a cluster of hypocenters at approxi-
mately km 50 and between 20 and 30 km depth 
is interpreted to project to the surface at the loca-
tion of the Lishan fault (LF in Fig. 3; for a simi-
lar interpretation, see Wu et al., 2004; Gourley et 
al., 2007). Farther east, at approximately km 80, 
an open to tight cluster of hypocenters appears 
to be associated with the Chinma fault (ChF in 
Fig. 3), which places Mesozoic basement on top 
of Eocene and younger slope-derived sediments.

NANTOU EARTHQUAKE SEQUENCE
Hypocenters from the Nantou earthquake 

sequence (Fig. 4) have been relocated using 
the same 3-D velocity model and collapsing 

methodology as those shown in Figure 3. The 
majority of the hypocenters plot along the deep 
trace of the Shuilikeng fault and a number of 
them, including the main shock, plot within 
the cluster interpreted to be associated with 
the Lishan fault. Focal mechanisms that we 
determined for the four events of ML > 4 have 
reverse fault-plane solutions (Fig. 4). The co-
incidence of the Nantou earthquake hypocen-
ters with the interpreted deep locations of the 
bounding faults of the Hsuehshan Basin deter-
mined from the data presented herein further 
indicates that these faults are important struc-
tures contributing to mountain building in cen-
tral Taiwan.

DISCUSSION AND CONCLUSIONS
The combination of geological, P-wave ve-

locity, and earthquake hypocenter data present-
ed here suggests that the basin inversion model 
(Fig. 1C) for deformation in central Taiwan is 
a viable alternative to the previously accepted 
thin-skinned model (e.g., Davis et al., 1983; 
Dahlen et al., 1984; Suppe, 1987; Carena et al., 
2002; Yue et al., 2005; Malavieille and Trul-
lenque, 2009) (Fig. 1B). Signifi cant seismic ac-
tivity along the margins of the Hsuehshan Basin 
and shallowing of higher P-wave velocity mate-
rial in the area occupied by the Hsuehshan Basin 
provide strong evidence that the reactivation of 
its bounding faults and the uplift and exhuma-
tion of its synrift sediments and basement rocks 
compose the dominant deformation style in this 
part of central Taiwan. The data show that the 
deformation reaches at least 30 km beneath the 
Hsuehshan Basin, further suggesting that base-
ment rocks must be involved in the deformation 
in this region (see also Wu et al., 1997, 2004; 
Gourley et al., 2007; Brown et al., 2012; Ch-
uang et al., 2013). However, we cannot deter-
mine if there is a deep level of detachment at 
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Figure 2. A: Simplifi ed geo-
logical map of study area in 
central Taiwan. B: Geological 
cross sections through study 
area (modifi ed after Brown et 
al., 2012). C: Location of study 
area. ChF—Chinma fault; LF—
Lishan fault; SkF—Shuilikeng 
fault; Hol—Holocene; Pli—
Pliocene; Ple—Pleistocene; 
Oli—Oligocene; Mio—Miocene; 
Eoc.—Eocene; L. Paleo—Late 
Paleocene; Meso—Mesozoic.
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these depths beneath the Hsuehshan and Cen-
tral ranges with the current data sets.

The Nantou earthquakes highlight the need 
for a revised structural model for central Tai-
wan that provides a more precise framework for 
seismic risk assessment than the currently used 
thin-skinned model. We suggest that a model in 
which preexisting basins that were located on 
the Eurasian margin are being inverted along 
deep penetrating faults provides a viable expla-
nation for the Nantou earthquake sequence, and 
therefore gives a new perspective for identifying 

fault source when assessing seismic risk in the 
area. In the light of this new structural model, 
the Shuilikeng and the Lishan faults are both 
candidates for future damaging earthquakes 
such as the Nantou main shock.
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Figure 3. A: Uninterpreted verti-
cal sections through three-di-
mensional (3-D) P-wave veloc-
ity model (Wu et al., 2007) and 
relocated (Wu et al., 2008) and 
collapsed seismicity used in this 
study. ChF—Chinma fault, LF—
Lishan fault, SkF—Shuilikeng 
fault. B: Interpreted vertical sec-
tions. Hypocenters are projected 
from 4.99 km on either side of 
sections (section locations are 
in Fig. 2). Spatial uncertainty of 
hypocenters was determined as 
horizontal and vertical location 
errors following Wu et al. (2008), 
and can be found in hypocenter 
database (available from authors 
or at http://seismology.gl.ntu.edu.
tw/download_04.htm). Data were 
collapsed using 3-D spatial un-
certainty of 4 standard deviations 
(methodology of Jones and Stew-
art, 1997) to truncate confi dence 
ellipsoid and estimated variance 
in data. Hypocenter movements 
were compared with χ2 distribu-
tion and repeated until minimum 
misfi t was reached. For compari-
son, uncollapsed seismicity data 
are provided in Figure DR1 in the 
GSA Data Repository1. Faults on 
interpreted sections are derived 
from surface geological and hy-
pocenter data only. Dashed white 
line indicates 5.5 km s–1 isoveloc-
ity line that we use as reference 
for top of basement. 

Figure 4. P-wave velocity 
model B-B′ with geologically 
determined faults and col-
lapsed 27 March to 15 April 
2013 Nantou, central Taiwan, 
sequence hypocenters. SkF—
Shuilikeng fault, LF—Lishan 
fault, ChF—Chinma fault. Red 
star indicates location of 6.2 
ML main shock. Hypocenters 
have been projected from 
4.99 km on either side of sec-
tion, for total of 418 events.
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