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[1] Distributed activity of geomorphic processes with different spatiotemporal scales is
hard to monitor in detail with conventional methods but might be detected with
seismometers. From July to September 2010, we deployed 14 seismometers to evaluate the
ability of a two-dimensional array with small interstation distances (11 km) to continuously
monitor geomorphic processes in a mountain catchment (370 km2) in Taiwan. Spectral
analysis of seismic records highlights different sources with high-frequency content (>1 Hz),
consistent with hillslope and river processes. Using a common detection algorithm and a
location technique based on the timing of seismic amplitude, we have located 314 near-surface
events, most of which (69%) occurred during daily convective storms. Event activity was
positively correlated with the precipitation intensity, but this relation was not uniform in the
catchment. High-resolution satellite images and air photos did not show geomorphic change
during the study, which did not have any episodes of extreme precipitation. Amajority of events
(61%) were collocated with preexisting geomorphic features (landslide scars, gullies) within the
uncertainty on location (9% of interstation distance). The combination of event location and
timing suggests a geomorphic source of recorded signals and most events had the seismic
characteristics of rockfall, debris avalanches, or slides. Reactivation of prior erosion sites by
such processes is difficult to detect with imagery, but can possibly be resolved by seismic
monitoring. When proven, this approach will allow a spatially comprehensive survey of
geomorphic activity at the catchment scale, with temporal detail sufficient to evaluate the exact
(meteorological) conditions under which process events occur.
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1. Introduction

[2] Geomorphic processes as diverse as rockfall, landsliding,
debris flow, and fluvial sediment transport occur distributed
across landscapes under a range of external conditions. Their
individual rates and interactions together determine the sedi-
ment flux from a landscape, the sensitivity and response of that
landscape to changes in external forcing, and the hazard risk
associated with erosion. To understand the mechanisms of

geomorphic processes and their connectedness, and ultimately
the dynamics of erosional landscapes, it is necessary to know
what process events happen where in a landscape, how much
material is involved, and when they occur with a time and space
resolution that permits direct comparison with records of
external forcing. Established monitoring techniques and
approaches meet these requirements only to a degree. Optical
remote sensing using satellite data or aerial photography is a
common basis for mapping of erosional change over large areas
with meter-scale spatial resolution [e.g., Guzzetti et al., 2000;
Chang et al., 2006]. However, this approach commonly yields
constraints on erosion areas rather than volumes, and its time
resolution is set by the frequency of the data acquisition. This
resolution is of the order of a week at best, and data availability
is highly dependent upon atmospheric conditions, affecting the
efficiency of detection especially during periods of precipitation
when geomorphic activity is most likely. At this time resolution,
it is difficult to link geomorphic change by rapid processes to
the specific conditions from which they resulted. Moreover,
optical detection techniques crucially rely on changes in the
reflective properties of the imaged surface [e.g., Lin et al.,
2011], commonly associated with removal of vegetation or soil
cover, precluding reliable observation of areas with recurring
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geomorphic activity [Reid, 1998; Brardinoni et al., 2003]. In
situ monitoring techniques do not suffer from these restrictions.
Using wire and pressure sensors, radar, laser, or video, these
techniques have been developed for site-specific, continuous
monitoring of mass wasting and channel flow, often for early
warning purposes [Itakura et al., 2005; Arattano and Marchi,
2008]. This approach can yield data with very high temporal
resolution, allowing assessment of the specific conditions under
which an event occurred. However, monitoring equipment is
often set up in places with a high likelihood of activity, which
introduces a bias to observations, whilst the approach also lacks
a view on the landscape at large. Thus, these two approaches
tend to offer spatial or temporal resolution, but not both.
[3] Acoustic waves or ground vibrations induced by the

impact of moving sediment particles on their substrate have
been exploited for in situ or focused geomorphic monitoring
[Huang et al., 2007; Barton et al., 2010]. They can be
registered by geophones installed along a channel or at a
check dam [Hsiao et al., 2007] and are used in early warning
systems in mountain catchments [Berti et al., 2000; Badoux
et al., 2009]. However, acoustic monitoring is limited to the
survey of single-channel sections and does not allow the
systematic characterization of erosion in a larger area.
Following a similar principle, seismic sensors (seismometers
and accelerometers) are increasingly employed in the moni-
toring of hillslopes [Burtin et al., 2009; Helmstetter and
Garambois, 2010] and river processes [Burtin et al., 2010,
2011; Hsu et al., 2011]. The interest of seismometers is in
their ability to continuously record ground vibrations from
distributed sources. The potential of seismic monitoring has
been explored in various geomorphic contexts, including
bed load transport [e.g., Burtin et al., 2011; Tsai et al.,
2012], landslides [e.g., Suriñach et al., 2005], debris flows
[e.g., Marchi et al., 2002; Burtin et al., 2009], snow ava-
lanches [e.g., St. Lawrence and Williams, 1976; Leprettre
et al., 1998; Lacroix et al., 2012], rockfalls [e.g., Deparis
et al., 2008, Helmstetter and Garambois, 2010], rock ava-
lanches [e.g., Dammeier et al., 2011], and sea cliff erosion
[e.g., Adams et al., 2005]. In addition to these observational
applications, modeling of seismic signals is also relevant to
understanding of the physics and dynamics of mass
movements [Brodsky et al., 2003; Favreau et al., 2010].
There is now a body of work that clearly demonstrates the
utility of seismological approaches to monitoring of surface
processes. However, most of this work has been restricted
to individual processes, specific events, and/or single sites.
Since seismic waves caused by geomorphic processes can
travel over large distances [e.g., Ekström and Stark, 2013],
seismology also has potential geomorphological applications
on larger scales. This could offer a useful combination of spa-
tial coverage and temporal resolution for landscape-scale
monitoring of geomorphic activity, provided that there is a
favorable trade-off between the size and the spatial resolution
of the seismic instrument network, and a sufficient ability to
detect, identify, and locate multiple, distributed events of a
variety of processes.
[4] The geometry of a seismic array has a primary control

on the ability to locate distributed geomorphic events.
Analysis of seismic data from the Hi-CLIMB array, a tempo-
rary seismological experiment in the Himalayas [Nábělek
et al., 2009], has demonstrated that a linear instrument align-
ment is not fully adapted to the location of geomorphic

process events that occurred off the array trend [Burtin et al.,
2009]. Instead, the many directions that exist between seismic
stations in a two-dimensional (2-D) array cover a large range
of azimuths, reducing drastically the ambiguities in the location
of sources [e.g., Swanson, 1992]. Two-dimensional arrays can
be configured for a specific purpose. For example, an array of
sensors installed in concentric rings with a small aperture
(102m) allows high-resolution monitoring of process activity
within a small area [e.g., Lacroix and Helmstetter, 2011] and
possibly the tracking of mobile sources [Lacroix et al., 2012].
In such a configuration, the spatial coverage is limited to a
predefined geomorphic domain such as a hillslope affected by
a landslide or an avalanche gully, precluding observation of
an entire landscape. Catchment-scale (101–102 km2) monitoring
of a range of geomorphic processes requires a 2-D array
geometry with a larger interstation distance, trading location
accuracy for spatial coverage, as well as event detection and
location techniques suited to the specifics of geomorphic source
signals. This has not been attempted before.
[5] In this study, we explore the use of a dedicated seismic

array to monitor surface processes at the scale of a catchment.
During summer 2010, we deployed a 2-D array of seismometers
in the Chenyoulan catchment (370km2) in the western Central
Range of Taiwan. Following a description of the seismic
experiment and its setting, we introduce the different stages of
the analysis of seismic signals, from event detection to location.
The results from our seismic monitoring of the Chenyoulan
catchment are then compared with available independent data
sets to establish whether our seismic observations match
remote-sensed constraints on geomorphic activity and to explore
the connection between meteorological conditions, like rainfall
intensity and location, and seismically detected near-surface
activity in the catchment.

2. Setting and Data Acquisition

2.1. Area of Study

[6] The Chenyoulan River drains an area of 370 km2 strad-
dling the north-south Chenyoulan thrust fault (Figure 1), one
of the major active faults of the Taiwan orogen. Rapid and
persistent tectonic shortening across the orogen at a rate
of ~90mm/yr [Sella et al., 2002] gives rise to intense seismic
activity with frequent, moderate magnitude earthquakes at
shallow depths in the Central Range and the Western
Foothills [e.g., Sibuet and Hsu, 2004]. Dipping to the east,
the Chenyoulan thrust fault delineates two main geological
domains, with Paleogene slates and metasandstones to the
east, and Neogene interbedded shales and sandstones to the
west. Compressive strength tests reveal that the older rocks
in the eastern part of the catchment are more competent than
the western geological units whose shale interbeds have lim-
ited frictional strength [Lin et al., 2008]. These rocks underlie
mountain topography culminating at Yushan, 3952m above
sea level (asl). Throughout the catchment, kilometer-high
mountain ridges are separated from bedrock river channels
by long, straight hillslopes with uniform modal gradients of
around 37°.
[7] From May to October, Taiwan is hit by typhoons [e.g.,

Galewsky et al., 2006] that provide the extreme climatic con-
ditions favorable to frequent triggering of hillslope activity.
Sustained, high erosion rates on hillslopes [Dadson et al.,
2003], driven by frequent, intense precipitation (average
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annual precipitation ~3m), have caused alluviation of the
trunk streams of the catchment. As a result, a gravel braid
plain dominates the lower catchment, reaching a width of
300m at the confluence of the Chenyoulan River with the
larger, west flowing Choshui River. In west Taiwan, large
earthquakes, Mw> 7, such as the Mw 7.6 1999 Chi-Chi
earthquake [Kao and Chen, 2000], have occurred with
regularity [e.g., Streig et al., 2007], soliciting a strong
geomorphic response [Meunier et al., 2007; Hovius et al.,
2011]. Very high rates of mass wasting after the Chi-Chi
earthquake, with more than 48,000 landslides triggered by
individual large typhoons between years 1999 and 2006
[Dadson et al., 2004; Lin et al., 2008; Hovius et al., 2011]
make the Chenyoulan catchment a suitable location for the
development of a seismological technique dedicated to the
monitoring of geomorphic activity at the catchment scale.
Furthermore, with a relatively limited size, this catchment
does not require so many seismometers that logistics could
become hard to manage during the experiment in order to
resolve relevant geomorphic processes.

2.2. Seismic Data

[8] From 1 July to 30 September 2010, we deployed 14
seismic stations, distributed across the Chenyoulan catchment
(Figure 1). Among them, 10 instruments were GURALP
CMG-6TD intermediate band sensors (denoted by CYL##)
with a flat response in the 0.033–100 Hz frequency band and
a preselected sampling rate of 200 samples per second (SPS).
These instruments were installed well away from major
channels, mostly high in the mountains to record hillslope
activity. The remaining four instruments were KINKEI short
period sensors (denoted by SHP##) with a natural frequency
of 1Hz. These short-period sensors were located along the main
stream at distances of<800m from the Chenyoulan River in
order to monitor river processes (Figure 1). Due to the digitizer
specifications of the short period instruments, the sampling rate
was limited to 100 SPS. Because we have constrained our anal-
ysis below 50Hz, the difference in sampling rate between the
two instrument types has had no effect on data processing.
[9] Site selection criteria for our stations included the

absence of persistent, nearby human activity to minimize
the signal disturbance by anthropogenic sources, like vehicle
traffic and road works. The stations were deployed on flat
terrain, at maximum distance to significant breaks in topo-
graphic slope to avoid large amplification or attenuation of
seismic waves, and with homogeneous substrate suited to
manual digging. At each site, we excavated a pit of about
0.6m deep and installed the seismometer on a level, concrete
patch before sealing and covering the instrument. Access
restrictions meant that the eastern part of the catchment was
less well equipped than the western side. In addition, stations
CYL07 and CYL09 were either inaccessible or not opera-
tional during most of the survey. Data from these stations
have been eliminated from this study. Thus, the average
distance between seismometers was 11 ± 6 km (1σ), with
closer instrument spacing in the upstream part of the catch-
ment where most geomorphic activity had occurred prior to
the survey.

2.3. Meteorological Data

[10] To complement our seismic observations, we have 10
min precipitation rate data recorded at 16 rain gauges in or
close to the Chenyoulan catchment (Figure 1; Central
Weather Bureau (CWB), Precipitation data, 2010). The seis-
mic survey period was chosen to coincide with the typhoon
season, which lasts from May to October [Chen and Chen,
2003], and during which most erosion occurs [e.g., Stark
et al., 2010]. Over our monitoring interval, storm activity
was subdued, with a recorded total precipitation of 745mm
at Tungpu in the center of the catchment (Figure 1). One
large tropical storm in July (Days 207–209) and a category
3 typhoon, Fanapi, in September (Day 261–262) deposited
185 and 162mm rainfall, respectively (Figure 2b). This was
in marked contrast to the 2009 typhoon season, when up to
3000mm of rainfall occurred in 4 days during passage of
Typhoon Morakot [Chien and Kuo, 2011].

2.4. Imagery Data

[11] Satellite imagery and aerial photography necessary to
determine a context for the detected surface or near-surface
activity and to test the interpretation of seismic data are also
available. Erosion features on hillslopes were mapped from
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and array geometry of the instruments deployed from 1
July to 30 September 2010. Seismological and meteorological
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FORMOSAT-2 multispectral (visible to near-infrared) im-
ages with a resolution of 8m. This was done with a classifi-
cation procedure outlined by Lin et al. [2011], applied to
images with less than 6% cloud cover, acquired on Days
222, 254, 266, 275, and 285 (from August to October
2010). Briefly, on the FORMOSAT-2 multispectral images,
eroded areas are discernable through absence of vegetation.
Using a Normalized Difference Vegetation Index (NDVI)
criterion [Lin et al., 2011], bare land features can be isolated.
Bare land with steepness of less than 10°, as well as steep land

features smaller than nine adjacent grid cells (576m2) were
automatically removed from the catalogue. Subsequently, areas
of agriculture and construction were removed manually. This
procedure identifies erosion areas with an overall accuracy of
>95% [Lin et al., 2011]. By differencing of erosion maps from
successive FORMOSAT-2 images, erosional change can be
detected at the scale of individual image pixels (64m2) or larger
areas. Using 2 m resolution, panchromatic versions of the
FORMOSAT-2 images, the results from the NDVI procedure
were checked manually to validate the quality of the analysis
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Figure 2. (a) Spectrogram of the vertical continuous seismic signal recorded at CYL01 for the period of
experiment. The spectrogram amplitude is given in decibel (dB) relative to the velocity. Blue and red colors
stand for low and high seismic energy, respectively. (b) Mean daily rainfall (black) recorded at 16 rain
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tropical storm and a typhoon, Fanapi.
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and to identify any erosion features smaller than 576m2. A
further manual verification of mapped features was done with
a composite of orthorectified photographs with a resolution of
0.5m to determine the outlines of erosion features in the
catchment at the highest possible resolution. Automated
mapping and comprehensive manual checking did not show
any new erosion features in the Chenyoulan catchment during
the time interval of this study. This could be due to low

geomorphic activity and/or the inability to detect all geomorphic
change with this method.

3. Seismological Methods

3.1. Signal Classification

[12] Seismometers are sensitive to signals from a wide
range of sources, including tectonic processes (earthquakes,
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volcanic and nonvolcanic tremors), environmental sources
(oceanic swell, ice movement, rainfall, and wind), and human
activities. Although very large (>107m3), fast landslides can
generate long-period wavefields that can be detected
teleseismically [Kanamori and Given, 1982; Ekström and
Stark, 2013], previous studies have established that the seismic
signals emitted by common surface processes such as river bed
load transport and rock avalanches are largely restricted to a
high-frequency range (> 1Hz) [e.g., Burtin et al., 2008, 2011;
Hsu et al., 2011; Dammeier et al., 2011]. Unfortunately, this
frequency band is also affected by local earthquakes (distances
100km) [Lay and Wallace, 1995] and anthropogenic sources
such as traffic, excavation, and construction work [McNamara
and Buland, 2004]. A time-frequency characterization of a
range of common event types is therefore required prior to the
systematic analysis of geomorphic activity and its location.
This does not exist at present, but some seismic characteristics
of individual geomorphic processes can be identified from
published work.
[13] During our survey, 29 shallow local earthquakeswere trig-

gered in the catchment with a magnitude range of Ml 0.7–5.7.
Such earthquakes could be mistaken for riverbank collapses
and rock avalanches. On a seismogram, a local earthquake
typically exhibits a sharp rise of the seismic amplitude and
the first wave arrivals are followed by an exponential ampli-
tude decay. The event duration is related to the earthquake
magnitude and is several tens of seconds (Figure 3).
Seismograms of rock avalanches, recorded at various locations
[e.g.,Deparis et al., 2008; Vilajosana et al., 2008;Hibert et al.,
2011; Dammeier et al., 2011; A. Burtin et al., Seismic con-
straints on dynamic links between geomorphic processes and
routing of sediment in a steep mountain catchment, submitted
to Earth and Planetary Science Letters, 2013, hereinafter
referred to as Burtin et al., submitted manuscript, 2013],
tend to have an emergent onset preceding the peak of ampli-
tude, but the rise time varies from one event to another and
also with distance to a station. The peak of amplitude tends
to be followed by a more gradual decay of the seismic
energy than for a local earthquake, but the two event types
can have a similar duration (Figure 3). Moreover, variability
of rockfall and rock avalanche rise times for a single event
makes this parameter difficult to use for source characteriza-
tion. As a consequence and when considered in isolation,
the temporal features of seismic records for rock avalanches
and local earthquakes are ambiguous. However, additional
information can be obtained from frequency analysis. The
spectrogram of a local earthquake commonly shows a sharp
increase of the seismic energy over a broad high-frequency
band (up to 40Hz) [e.g., Helmstetter and Garambois,
2010], followed by an energy decay that is more
pronounced at higher frequencies, illustrating the stronger
attenuation of high-frequency seismic waves [e.g., Toksöz
and Johnson, 1981]. A rock avalanche spectrogram also
has a sudden or progressive onset, but the decay has a
frequency dependence that differs from a local earthquake
(Figure 3). First, we observe that the seismic energy below
3Hz is not dominant as in earthquakes; second, we notice
that the decay of energy is less important than for
earthquakes; and third, there can be a shift to higher frequen-
cies in the tail of rock avalanche signals recorded at relatively
short distance from source [Helmstetter and Garambois,
2010; Hibert et al., 2011; Burtin et al., submitted manuscript,

2013]. We have used these frequency-specific attributes to
distinguish between local earthquakes and rock avalanches
within the reach of our instrument array.
[14] Larger earthquakes, located elsewhere in the region,

are a second type of tectonic event recorded by the array.
Most of these events were located in Japan and the
Philippines, to the north and the south of Taiwan, respectively.
The seismogram of a regional earthquake does not have a sharp
rise in amplitude but rather shows a gradual increase over a few
tens of seconds, followed by a gentle decay (Figure 3), giving
an event duration on the order of 1 or a few minutes. These fea-
tures are also common characteristics of debris flows that have a
complex source time function with many peaks of amplitude
[Burtin et al., 2009]. Amplitude-time analysis alone does not
permit robust discrimination between tectonic and geomorphic
events. However, our records of regional earthquakes are
characterized by the absence of seismic energy above 5Hz.
This feature is probably explained by the anelastic attenuation
of seismic waves that strongly affects the highest frequencies
for large event-receiver distances (up to 1000km) [e.g.,
Toksöz and Johnson, 1981; Lay and Wallace, 1995]. The
observed spectrogram pattern for a regional earthquake thus
results from the properties of the medium in which seismic
waves propagate. Drastic high-frequency attenuations are not
observed for sources located in the catchment. Therefore, debris
flow signals have broader frequency contents and peaks of
seismic energy in the 1–20 Hz band (Figure 3). Importantly,
seismic waves from a debris flow do not usually propagate
far. Burtin et al. [2009] found that a debris flow in the
Himalayan Trisuli Valley with a volume of approximately
1500m3 registered at seismic stations up to 20km away. In
the Swiss Illgraben catchment, signals of smaller debris flows
of about 1000m3 attenuated significantly within 5 km from
source (Burtin et al., submitted manuscript, 2013). This is
probably because the source is located at the surface, where
the medium strongly attenuates the wave amplitude. In contrast,
seismic waves from larger earthquakes (Mw> 6) at epicentral
arc distances of 8–20° have been recorded by our array. This
difference in characteristic travel distance gives a further means
of distinguishing between debris flows and regional earth-
quakes. In addition to our own data, we have analyzed seismic
data from permanent stations of the BroadbandArray in Taiwan
for Seismology (BATS) within 270km from the Chenyoulan
catchment (stations KMNB, TPUB, TWGB, SSLB, and
YHNB), deeming any event within the catchment and observed
at BATS stations to be tectonic rather than geomorphic in ori-
gin. However, it should be kept inmind that largermass wasting
events can have a distinct long-period signal, 10–30 s, that may
be recorded at great distance [Lin et al., 2010; Ekström and
Stark, 2013]. Smaller landslides produce seismic signals that
last several minutes, sometimes up to tens of minutes, with high
amplitudes, irregular envelopes, and a lack of distinctive arrivals
of P and S seismic phases [La Rocca et al., 2004; Suriñach
et al., 2005; Favreau et al., 2010;Kao et al., 2012]. The seismic
energy is dominant in the 0.1–10 Hz frequency band but long-
period waves can be recorded [Favreau et al., 2010].
[15] Shifting attention to environmental sources, river

noise can mask the seismic signals of other processes.
During floods, bed load transport of many particles simulta-
neously, flow turbulence, and air bubble cavitation can
together produce a continuous seismic signal with long-term
fluctuations associated with the river stage [Burtin et al.,
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2011], occasional step changes due to localized sediment
supply by hillslope mass wasting, and punctuations associated
with the movement of individual, large grains, or sets of
grains [Turowski et al., 2009] (Figure 3). The multitude of
bed load impacts in a mountain river may induce overlap
of seismic waves, which precludes the identification of individ-
ual particle-bed collisions and gives rise to a continuous seismic
signal of bed load transport. In our survey catchment, flooding
of the Chenyoulan River could generate high-frequency signals,
mainly above 20Hz (Figure 3). Seismic stations located in the
vicinity of the Chenyoulan River and its tributaries might there-
fore, at times, be overwhelmed by river signals, affecting our
ability to detect and locate small rockfalls. However, larger
mass wasting events and earthquakes have sufficient energy to
emerge from the river signal. Moreover, the river signal is
distinct from most others due to its continuity, with possible
exception of wind and rainfall. These sources also affect the
spectral energy of seismograms above 1Hz [e.g., Withers
et al., 1996], where wind disturbance is enhanced at stations
in the vicinity of trees whose roots transfer wind energy to the
ground. Therefore, we have avoided the installation of stations

close to tall trees. Seismic noise from rainfall is unlikely to affect
our data significantly. In a previous study in a river braid plain in
the French Alps, Burtin et al. [2011] noticed that rain only
affects the seismic data from stations that were located close
to large boulders. In contrast, stations situated in finer-grained
sediments, a few hundred meters away from these boulders,
did not register rainfall. This indicates that the coupling of rain-
drops with the groundmay only be efficient on rocky substrates.
In the Chenyoulan, our stations were systematically located in
colluvium or alluvium. Furthermore, Burtin et al. [2011] found
that the seismic noise from rain was dominated by
frequencies>60Hz and had no coherence between stations.
[16] Finally, human activity is a frequent source of seismic

signals [e.g., McNamara and Buland, 2004]. In the configura-
tion of our array, we have suppressed this class of signals by
avoiding as much as possible roads, pipelines, settlements,
and farms as well as temporary works. In the mountain setting
of our study catchment, farming, construction, gravel extraction,
and traffic are the main activities. Largely confined to daylight
hours, these activities tend to give punctuated seismic signals,
with a high-frequency content that attenuates quickly with
distance traveled. Moreover, the energy of the anthropogenic
sources in this setting is typically small and is mostly registered
at only one or two stations. For example, cars passing near
station CYL02 register at that station with an amplitude of about
10μm/s (Figure 4), but not at other stations in our network.
Also, station SHP04, located about 0.2 km from the
Chenyoulan River (Figure 1), recorded anthropogenic
disturbances due to gravel extraction from the river bed
(Figure S1 in the supporting information). The seismic record
of this station shows a succession of short impulse events that
are produced by pneumatic tools that we observed during
station maintenance visits. At the nearest station CYL08, 2 km
from SHP04, such seismic signals were not recorded. These
examples highlight the fact that many human sources of seismic
signals are only effective in close proximity of a station and
could not be registered at multiple sites elsewhere in our array.
By imposing a minimum number of stations at which an event
is recorded, these sources can largely be excluded from further
analysis. This may result in the exclusion of small geomorphic
events from detection and location. Figure 4 shows that the
anthropogenic event in the vicinity of CYL02 was followed
by, and contrasted with a possible geomorphic event that was
detected by all stations of our array.
[17] Taken together these observations underline the im-

portance of combining the frequency, time and attenuation
characteristics of an event signal to discriminate between
source types. In the absence of quantitative criteria for most
source types, we have done this manually. The identification
of such criteria remains an outstanding challenge in the
development of this approach.

3.2. Signal Detection

[18] Over a longer-term survey, the total number of
recorded events can be such that comprehensive manual
detection and location become impractical. Moreover, man-
ual analysis precludes objective, continuous, and, ultimately,
real-time monitoring. Therefore, we have applied an auto-
mated approach to the detection and location of events.
[19] Our automated event detection uses a short-term aver-

age/long-term average (STA/LTA) approach [e.g., Havskov
and Alguacil, 2006]. This method is widely used in
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Figure 4. Comparison of an anthropogenic seismic signal
with a geomorphic event (triggered on Day 194—time
08:36A.M. UT) recorded at CYL01, CYL02, CYL03, and
CYL04, from top to bottom, respectively. The vertical seis-
mic records are band-pass filtered at 20–30 Hz. At CYL02,
the amplitude in μm/s is 20 times increased after the dashed
line at 100 s in order to observe the geomorphic event that
is overwhelmed by the amplitude of anthropogenic event.
The gray line highlights the arrival of the geomorphic event
at stations. The anthropogenic disturbance is commonly only
recorded at the nearest station whereas a relevant geomorphic
event is detected by a large number of stations.
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seismology for the real-time survey of seismicity recorded by
permanent seismic networks. The detection algorithm con-
siders the ratio between the average of the absolute seismic
signal over a short- and a long-time window of about 1 and
100–500 s, respectively. An event is identified when the
STA/LTA ratio exceeds a predefined threshold for more than
a predefined length of time. The seismic signals of expected
geomorphic events have a range of characteristics: (1) signals
with a short duration (101 s; Figure 3), possibly induced by
bank erosion, debris mobilized in gullies or rockfalls, and
(2) complex signals with a longer duration (102 s; Figure 3),
maybe generated by debris flows, rock avalanches, or land-
slides. Because the duration of an event affects the LTA
and the duration of the detection trigger, we have defined
two different sets of parameters for the detection of these
two types of events.
[20] Prior to execution of the detection algorithm at a station,

the three component seismic records were first deconvolved
from the instrument response, and we removed the trend and
the mean of the time series. Subsequently, we used a band-pass
filter with a 20–30 and 1–4 Hz frequency band for the detec-
tion of fast mass wasting processes and debris flows or land-
slides, respectively. These frequency bands were chosen in
accordance with the observations summarized in section
3.1 and with the express aim of singling out geomorphic
processes other than bed load transport. The 20–30 Hz band
is narrower than the characteristic frequency range of fast
mass wasting processes. However, at lower frequencies,
the amplitude envelope of recorded signals is too complex,
with too many individual peaks and too little difference
between peak and background energy. At higher frequency,
the definition (weight) of the peaks is better, but the signal
attenuation is too strong to guarantee detection at multiple
stations. Moreover, signals lose coherence between stations
at higher frequency, which becomes problematic above
40Hz. The 20–30 Hz band pass is a compromise between
these two. Furthermore, we opted for a 1–4 Hz band pass
for the detection of debris flows, because the seismic signals
of these flows can exhibit important discrepancies between
stations at frequencies>5Hz as well as complexities in
the time history [e.g., Arattano and Marchi, 2005; Burtin
et al., 2009] that can affect the length of the detection trig-
ger. Once the seismic data were filtered, we summed the
absolute amplitude of all available components at a station
and ran the detection algorithm on this function.
[21] The length of the STA was set at 1 and 10 s and the

LTA at 120 and 300 s, for the short- and long-time event
detections, respectively. The threshold ratio to trigger the
detection of an event was set at 3 and we used a detrigger
threshold of 1.5 [Havskov and Alguacil, 2006]. A long-
duration event might affect the LTA, compromising the
characterization of the background noise level of the time
series. Therefore, we have used a freezing LTA after
exceedance of the trigger threshold. Finally, and in accor-
dance with preliminary event observations (Figure 3), the
minimum-required duration of the trigger was set to 15 and
50 s for the detection of short- and long-time events, respec-
tively. Use of shorter trigger times would permit detection of
smaller, local events, with increased likelihood of spurious
results due to numerical noise, and longer trigger times
would give rise to unwanted exclusion of some significant
geomorphic events.

3.3. Signal Location

[22] To locate surface and near-surface sources, we have
employed a method developed for the monitoring of
nonvolcanic tremors. It is derived from the source-scanning
algorithm (SSA) introduced by Kao and Shan [2004] and
uses the full time evolution of seismic amplitude during an
event. We used this algorithm because the identification of
a coherent first arrival at many stations is usually impossible.
The principle of the approach is to map in a medium the
absolute seismic amplitude recorded at a station, for a given
initial time and velocity model. This migration of the seismic
amplitude is then produced for all stations, and the event
location is found by looking for the largest peak amplitude
since a coherent signal at stations should culminate at a
shared point, the origin of the event. The procedure has two
main stages: (1) the calculation of the amplitude function
for each station and (2) the migration of these functions to
compute a brightness function [e.g., Kao et al., 2012].
3.3.1. Amplitude Function
[23] First, to simplify the processing of data with different

sampling rates, we reduced the 200 SPS signals of the
GURALP sensors to 100 SPS. Then, for each event and each
station, we defined the amplitude function as the sum of the
absolute amplitude of all available components. We then ap-
plied a 1 s smoothing window to the amplitude functions. This
corresponds to the weighting factor Wm in Kao et al. [2012],
fixed at a value of 1. For a set of smoothed amplitude functions,
we then calculated the signal to noise ratio (SNR) in order to de-
termine the quality of the seismic data before migration. In our
study, this SNR criterion corresponded to the ratio of the peak
amplitude over the average of the amplitude function andwe as-
sumed that this average was representative of the background
noise level. We selected signals with SNR value greater than
3.5, to eliminate recordings with background seismic noise that
could affect the location. Finally, the viable amplitude functions
were normalized by 2σ (standard deviation of the time series),
emphasizing seismic signals with a high SNR [Kao et al.,
2006]. In principle, the location of a surface source can be
retrieved with records from only three stations. However, in
practice, the properties of our seismic array and the quality of
our data stipulate that the errors on a location are optimal with
data from at least five stations. Therefore, we have only consid-
ered events that were observed at five or more stations.
3.3.2. Migration Procedure
[24] To determine the likely location of a recorded event

with a source at or near the Earth’s surface, we have migrated
the corresponding amplitude functionsUA(t), using a ballistic
propagation with a constant velocity V in a discrete medium
M(x,y), where x and y are the spatial coordinates relevant to
the location process. In this procedure, time t was expressed
as t0 + τ, the initial time of the event plus the propagation time
from its location to a station i situated at xi, yi:

τi x; y; z;Vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xið Þ2 þ y� yið Þ2

q
=V :

[25] Hence, for an assumed t0 and a set of N stations, the
migration of each seismic signal was expressed as

M x; y;V ; t0ð Þ ¼ ∑
N

i¼1
UA

i t0 þ τið Þ=N :
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[26] In this treatment,UA
i t0 þ τið Þ can be interpreted as the

retropropagation of the seismic signal. Therefore, the ampli-
tude UA

i t0ð Þ is associated with the cell of the medium where
station i is located. As a result of the migration procedure,
the highest peaks of amplitude recorded at each station
should merge at the origin of the event under consideration.
The best fit location of the event is at the maximum of M. It
must be stressed that this migration process does not fully
take into account the heterogeneity of the local velocity struc-
ture and the details of the wave path.
[27] In practice, we did not have sufficient independent

constraints on the velocity V of high-frequency waves in
the substrate of the Chenyoulan catchment. Moreover, event
time t0 was unknown. With these two unknown parameters
and the unknown spatial coordinates x and y of the event lo-
cation, a detailed exploration is very time consuming. To re-
duce the time of data processing, we applied a sequential
procedure with three steps, in which the resolution of the un-
known parameters was progressively increased. We set the
grid increment dl to 1 km initially, and changed it to 0.5 km

and then 0.1 km in two further steps. In parallel, the area of
exploration was decreased to 20 km2 and then 10 km2 around
the best location in the previous analysis step. This stepwise
focusing of the location procedure is illustrated in Figure 5.
Although theoretically possible, in our study, the formal best
solution was on no occasion located outside the grid area
selected in the initial reduction step. Our method has limited
sensitivity to the depth parameter, but in the case of geomor-
phic events, most of the activity is located at the Earth’s
surface, or at shallow depths (<102m). Given this, the event
depth could be fixed at the surface. In addition, the ballistic
migration does not take into account the topography of the
medium. The difference between the raypath distances in a flat
medium and one with topography is limited (Figure S2), about
1.8% for the studied region in its entirety and areas with more
than 10% difference only represent 0.6% of the medium.
[28] A stepwise approach was also used for estimation of

t0, reducing the tested values progressively from ±40 to
±5 s around the best solution of the previous step. The time
resolution dt was adjusted with the grid resolution dl and
the assumed propagation velocity V according to dt= dl/V.
To retrieve the velocity, we explored a range of ±0.2 km/s
around the best solution from the previous best fit velocity,
starting with arbitrary values of V= 0.5 and 2.0 km/s for the
high- and low-frequency wave contents, respectively. These
starting values were chosen in view of test events and
previous experience [Burtin et al., 2009; Helmstetter and
Garambois, 2010]. They do affect the efficiency but not the
outcome of our procedure.
[29] Finally, to check the coherence of the location result,

the algorithm was executed again, starting with the parame-
ters of the best solution from the initial cycle. This control
of best fit parameters was stopped once the final solution
had stabilized. It ensured the elimination of any spurious
focus on local maxima due to the low spatial and temporal
resolutions at the outset of our analysis. In practice, the explored
regions with higher resolution were quite large and most
solutions were confirmed already in the second cycle.
[30] Some location examples for different event types are

illustrated in Figure 6. The results take the form of a bright-
ness map, with rings of high amplitude centered on stations
with the highest SNR. Depending on the complexity of the
seismic records for individual stations and the velocity field,
most of the amplitude peaks or rings on the map should
coalesce in a relatively small area. The degree of coalescence
reflects to a first order the quality of the location estimate. In
the examples in Figure 6, red lines mark the theoretical
arrival times of the dominant waves that we would expect
to observe with the best velocity and location.
3.3.3. Error Estimate
[31] A brightness map gives an event location and a pattern

for its precision. The brightness patterns differ from one event
to another due to the event position relative to the stations in a
heterogeneous medium and other influences on the quality of
the seismic data. In order to interpret the location results as a
single data set, a realistic location error must be defined that
takes in account the assumptions associated with our approach.
In the absence of controlled active sources, we have compared
the locations of 29 shallow (<10km) local earthquakes within
the Chenyoulan catchment derived by our method against inde-
pendent locations reported by the CWB for these same events,
to define a location precision. The posted horizontal and vertical
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Figure 5. Illustration of the adaptive medium discretization
used in the location procedure. A higher-resolution grid is in-
troduced around the last best location to improve the best fit
solution and to save computation time. A similar adaptive
discretization of the event initial time is used but is not repre-
sented here. Note the progression of best location solutions
with an increasing resolution, shown by circles from light
to dark gray tone. The seismic stations of our array are shown
by inverted triangles, and the outlines of the Chenyoulan
catchment are shown in black.
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errors on these reported locations are 0.6 and 0.8 km, respec-
tively. We filtered the seismic signals in the 1.5–6 Hz frequency
band that offered the best compromise for the ensemble of
events. This range of frequencies is similar to that selected for
location of debris flows, but lower than the frequency range
targeted for location of fast mass wasting events. In this
higher-frequency range, the quality and complexity of earth-
quake signals do not permit use of our location approach.
Locating events with a lower frequency content uses broader
amplitude peaks that give bigger bright areas with relatively
large uncertainties. Therefore, our constraints on location
uncertainties are conservative. After filtering, we followed the
procedure as described in preceding sections. The two

independent sets of earthquake locations were in significant
agreement (Figure 7). For the 29 local earthquakes, the mean
horizontal mismatch between independent locations was
2.4 ±1.3 km and it never exceeded 5km. If it is assumed that
the CWB locations are absolutely correct, then this mismatch
could define a minimum precision of our event locations. For
the best fit velocity, we obtained a value of 3.1 ± 0.3 km/s,
which seems realistic since the highest amplitudes should be re-
lated to shear and/or surface waves. This value is higher than the
2.1 km/s found for the debris flows highlighted in Figure 6, even
though the migration was done with a similar frequency con-
tent. The velocity discrepancy probably arises from the depth
of the sources and/or from the nature of the wave at the point
of focusing. For an earthquake at a depth of ~ 5-10 km, the
high-frequency waves propagate at greater depths and presum-
ably at higher velocities than for a geomorphic event at
the surface.
[32] In seismology, it is common practice to report locations

with uncertainties<5% of the dynamic range of brightness
[e.g., Lacroix et al., 2012]. Acknowledging, the minimum pre-
cision of our event locations as constrained by the analysis of
local earthquakes, we have imposed a more conservative, arbi-
trary threshold of 22%. At this threshold, we can match the
CWB locations of 50% of the local earthquakes as resolved
from the brightness function. Accordingly, event locations
are reported within the grid area with normalized brightness
values>0.78. This area typically has an elliptic shape around
the brightness maximum. The ellipse can be described by two
orthogonal, principal axes of different lengths defining an area
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Figure 7. Example of a Ml 1.1 local earthquake (triggered
on Day 219—time 10:02 P.M. UT) processed to determine
a realistic error for the location approach. On the left side,
vertical seismic signals and absolute amplitude functions
of the located earthquake are graphed for all seismologi-
cal stations in our local network. The green lines
demarcate the initial time of the located source and the
red lines mark the theoretical arrival time for the best
location and velocity. On the right side, the location
map shows the coherence of the absolute amplitude func-
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is most likely to contain the earthquake epicenter. This
coincides with event location published by the Taiwan
Central Weather Bureau, for which the residual horizontal
errors are shown by white bars.
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of confidence for the event location. The radius of a circle with
a surface area equal to that of the uncertainty ellipse for an
event was 1.0 km on average for the population of high-
frequency events, with a significantly lower modal value of
0.6 km (Figure 8). The average and modal length scale of un-
certainty are equivalent to 9% and 5% of the average distance
between stations in our array, respectively. Full brightness
maps can have secondary maxima with values <0.78 outside
the location uncertainty ellipse.

4. Results

4.1. High-Frequency Seismic Signal

[33] A time-frequency analysis of seismic data for the
duration of the survey highlights the seismic energy from
near-surface sources within the area covered by our array.
As an illustration, the spectrogram for station CYL01 at the
head of the catchment shows episodes of seismic energy that
coincided with rainfall peaks (Figure 2), in particular, the
tropical storm on Days 207–209 and Typhoon Fanapi on
Days 261–262. Other peaks of the average seismic energy
in the 1–80 Hz frequency band (Figure 2) were also appar-
ently coincident with rainfall. In addition to these prolonged
episodes of activity, daily sharp peaks of seismic energy be-
tween �180 and �165 dB have been recorded at station
CYL01. From Days 192 to 208, this periodic signal was
uninterrupted, and it was repeated in other shorter sequences
until the end of the survey (Figure 2). These periodic bursts
of activity occurred during afternoon convective storms,
which are typical in tropical mountain regions. They were
particularly well expressed at CYL01, probably because of

the elevation of that station, 2327m asl and associated oro-
graphic effects on precipitation. The bursts of high-frequency
energy recorded in the Chenyoulan catchment resemble the
seismic signals of slope and river processes registered
elsewhere [e.g., Burtin et al., 2009, 2011].

4.2. Location of Near-Surface Events

[34] Applying the criteria and protocols outlined in section
3.3, we have located 314 events with a likely near-surface
source in the interval July–September 2010 (Figure 8). The
large majority of these events were located within the
catchment, but 89 near-surface events outside the watershed
were registered by our seismometer array. The detected
events were widely distributed, with an average distance
between an event and the nearest station of 4.9 ± 3.9 km and
a maximum of 42km. The fact that the average event distance
to the nearest station is similar to the average half-distance
between stations, 5.5 km, confirms that our results are not
substantially biased by short-distance attenuation of seismic
signals. Spatial clustering of events was limited. Although
141 events are likely to have occurred within 1 km from at
least one other event, only 63 events had two or more
neighbors within this distance. Insofar as the errors and uncer-
tainties on event location permit an assessment, the events
occurred across a range of topographic settings including steep
stream banks, small tributary channels, straight hillslopes,
and ridge crests. Event clusters were found near steep-walled
trunk channels and on steep headwalls of geomorphically
active tributaries.
[35] The signals of 312 located events were dominated by

the high-frequency content that we have tentatively attributed
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Figure 8. (a) Distribution of 314 seismologically detected and located geomorphic events in the study
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to fast mass wasting processes such as rockfall and rock
avalanching. The energy level at 20–30 Hz of these events,
averaged over the three stations nearest to the likely event
location ranged from �180 to �139 dB, with a mean of
�163 dB (Figure 8b). These levels of seismic energy denote
events that are likely to have a limited size. Geomorphic
events recorded by the Hi-CLIMB array along the Trisuli
River ranged from �151 to �133 dB [Burtin et al., 2009].
The mean seismic amplitude of events observed in the
Chenyoulan catchment was 4 times smaller than the smallest
event studied with the Hi-CLIMB data set. Since the source
to station distances were similar in these two studies and in
view of their shared mountain setting, we tentatively attribute
differences in signal strength to the likely small size of events

recorded in the Chenyoulan catchment. Lacking a wave
attenuation model for the catchment, we abstain from a
conversion of recorded energy levels into source energy.
[36] In addition to these high-frequency events, two events

were detected with a dominant signal in the 1–5 Hz range.
Both occurred during the first day of the tropical storm in
July (Day 207; Figure 2). The event durations were short, 1
to a few minutes, but with several peaks of high amplitude,
resulting in a complex source time function (Figure 6). The
absence of low-frequency signal content and the proximity
of the sources to channels are suggestive of debris flow,
although a landslide source is difficult to discard. We tried
to locate these events with a high-frequency band, as for
the short duration events (20–30 Hz), but the constraints on
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location were not satisfying. Difficulties with the location of
debris flows are due to the complexity and long duration of
seismic signals from mobile sources that preclude sufficient
coherence between stations. The presence of multiple peaks
in the absolute amplitude function of a debris flow signal
gives rise to ambiguities when they are added in the
brightness function.
[37] For near-surface events with a high-frequency content,

the velocity at 20–30 Hz was around 0.4 ± 0.1 km/s (data
from 312 events). The relative uniformity of these best fit
velocities for widely distributed sources suggests that this
narrow velocity range is representative of the substrate
throughout the catchment. Location tests with amplitude
functions made from a separation of the vertical component
and the quadratic sum of horizontal components did not
significantly change the results. The relative weight of
horizontal components is thus larger than the vertical com-
ponent and most of the seismic energy should be carried
by shear and/or surface waves. However, robust estimation
of the vertical component is difficult since the 1 s smoothing
applied to the vertical and horizontal amplitude functions
attenuates the possible disturbance of P waves on S,
Rayleigh, and Love waves. A particle motion analysis could
be used to elucidate this issue but was outside the scope of
this study. Therefore, assuming that most of the seismic
energy was due to surface waves with a small penetration
depth at high frequencies, low velocities are thought to
reflect the characteristics of very shallow substrates, includ-
ing intensely fractured rocks, regolith, soil, and unconsoli-
dated sediment [Clarke and Burbank, 2011]. Independent
measurements of surface wave velocities at two high moun-
tain locations at the edge of the Chenyoulan catchment
found Vs> 0.76 km/s [Lee and Tsai, 2008], at the top end
of the range of best fit velocities for the near-surface events
detected in and around the catchment. If the difference in
surface wave velocity between these two stations and the
bulk of the Chenyoulan catchment is real, then it could
reflect the concentration of very weak materials such as
colluvium and alluvium, with very low Vs values, in lower
positions in the landscape and dominance of weathered
bedrock with slightly higher Vs values near ridges.
[38] The location method we have used explains most of

the peaks of amplitude observed at stations. However, the
agreement is lost for the stations farthest removed from the
likely event location, as shown for a rockfall event recorded
by stations CYL01 and CYL08 (Figure 6). Hence, over larger
distances (>20 km), the assumption of a constant velocity
fails to capture the heterogeneities in substrate characteris-
tics. For the low-frequency (possible debris flow) example
in Figure 6, the location estimate was derived, unsurpris-
ingly, from the largest amplitudes observed at stations. In that
example, the relatively low SNR values of the distant stations
did not adversely affect the ability to retrieve a tightly
constrained solution. Thus, the method seems to provide
good estimates of the location of both brief events with a
high-frequency content and longer-lasting events with a
lower frequency content.

4.3. Comparison With Imagery

[39] To investigate the link between our seismic event
observations and geomorphic activity in the catchment, we
used FORMOSAT-2 multispectral images (8m resolution)

and orthophotographs (0.5m resolution). We performed an
analysis of available images to detect change in the shape
of erosion scars and to identify new events. In contrast to pre-
ceding years with markedly high rates of mass wasting in the
catchment, five satellite images of the Chenyoulan catchment
with less than 6% cloud cover, acquired between August and
October 2010 did not reveal the occurrence of any visible
erosion events, neither landslides nor debris flows. Even
passage of Typhoon Fanapi did not cause visually detectable
change due to erosion in the catchment. Systematic manual
checking of all areas with significant prior geomorphic
activity, using the 2m resolution panchromatic version of
FORMOSAT-2 images, also did not reveal substantial
visible activity on hillslopes and confirmed the results from
the automated detection procedure.
[40] Notwithstanding the lack of discernable geomorphic

change over the survey interval, we have seismically detected
at least 314 events with a near-surface source, most of which
were located well away from anthropogenic activity. If these
events had geomorphic sources, then they may have
remained invisible to us for several reasons. Geomorphic
sources may have been located within areas already
devegetated by prior erosion, precluding optical detection
by a method predicated on changes in vegetation cover.
Comparing the locations of seismically detected events with
available imagery (Figure 9), we have found that 61% of
detected near-surface events were collocated with major ero-
sional features such as landslide scars or gullies that predated
the survey interval, within the uncertainty of our location
(modal value of 0.6 km). Only 40% of the catchment surface
area fits this distance criterion. Using a Monte Carlo
approach, the likelihood of randomly drawing 61% of
314 events matching a search criteria from a population
of which 40% match this criteria in 10,000 attempts is
1 × 10�12 (Figure S3). From this we conclude that preferen-
tial event location within an existing erosion scar can have
been a significant cause of our inability to identify them on
remote-sensed imagery. However, for 39% of detected events,
no direct link was found between the event location and an
existing geomorphic feature (Figure 9). This could be due to
erroneous event recognition or location. Alternatively, some
geomorphic sources may have been smaller than the unit of
change detectable with FORMOSAT-2 multispectral data
(64m2). Others may have been obscured by forest cover.
Furthermore, seismic surveying can detect rockfall in very
steep topography, where the process is difficult to assess
from imagery taken at a vertical angle. And finally, geomor-
phic sources may have been hidden by cloud cover, but this
only affects 18 detected events.
[41] Thus, we have no direct evidence of the nature of the

seismically detected near-surface events. These events have
seismic characteristics that match those of geomorphic pro-
cesses, such as rockfalls, fast debris slides, and debris flows,
but could also be due to nongeomorphic sources. If the
detected events were geomorphic in nature, then they
remained invisible on available remote sensed imagery due
to their small size, location within existing erosion scars or
very steep slopes, and/or overhead cover. Nevertheless, we
do propose that the majority of detected near-surface events
were likely geomorphic in nature. Our principal evidence
for this is circumstantial, consisting of a tight link between
the detected events and the spatial and temporal patterns of

BURTIN ET AL.: SEISMIC SURVEY OF GEOMORPHIC PROCESSES

1968



precipitation in the Chenyoulan catchment. This is substanti-
ated in the next section.

5. Links Between Detected Events and Rainfall

5.1. Event Patterns in Time and Space

[42] Rainfall is a universally recognized driver of geomorphic
activity. Therefore, if the seismically recorded near-surface
events are indeed mostly geomorphic in nature, then it is
expected that their patterns should be correlated with rainfall
in the Chenyoulan catchment. Before we consider this further,
it is important to rule out other possible mechanisms that could
give rise to links between rainfall and seismically recorded
activity. Meteorological phenomena such as rainfall, wind,
and thunder can register on seismometers. However, due to their
duration and frequency content, rainfall and wind can be ruled
out as sources of the 314 recorded events discussed in section
4. Thunder during heavy rainfall has a duration more like that
of the detected high-frequency events, but atmosphere-ground
coupling is most effective at frequencies below 15Hz
[Kappus and Vernon, 1991; Scarpetta et al., 2005], which is
at the lower end of the characteristic frequency range of these
events. Moreover, the seismic signal of thunder is typically
limited to distances below 5km [Kappus and Vernon, 1991;
O’Connell-Rodwell et al., 2011]. As we require an event to be
recorded by at least five stations for detection, this short
attenuation distance implies that thunder can also be excluded
as a significant source of near-surface activity identified by
our network. Furthermore, it has been argued that rainfall may
affect the occurrence of earthquakes, either by downward fluid
diffusion from the surface [e.g., Bollinger et al., 2007] or by
erosional unloading of active faults [e.g., Wdowinski and
Tsukanov, 2011], but these mechanisms require exceptional or
very prolonged precipitation and they are likely to entail
significant delays between the meteorological driver and seis-
mic response of up to years. For these reasons, we also rule

out rainfall-triggered seismicity as a possible source of the
near-surface activity we have detected. Finally, we assume that
human activity in rural mountain areas is negatively affected by
precipitation and that we have not overlooked any other sources
of high-frequency seismic signals that are systematically acti-
vated by rainfall. With this in mind, we look first at the temporal
and then the spatial links between precipitation and seismically
detected events.
[43] To explore temporal links, we have computed the

characteristic daily rainfall distribution by first combining
and averaging the 10 min records from all 16 stations in the
catchment (Figure 1) and then normalizing each day to the
daily maximum rainfall rate. This normalization gives equal
weight to days with different precipitation rates, thus
allowing a clean focus on the temporal aspect. By averaging
the time distribution of rainfall for all days without a domi-
nant cyclonic weather system, we then obtained the typical
daily time distribution of rainfall in the catchment
(Figure 10). This distribution shows a strong and regular pe-
riodicity with most rainfall between 2 P.M. and 7 P.M. local
time (6A.M.–11A.M. UT) due to local, convective storms.
A coincidence of this rainfall pattern with the seismic energy
recorded by stations in our array was already noticed from
the initial spectral analysis of the seismic data (Figure 2).
Indeed, the time distribution of seismically recorded events
has a very similar daily periodicity with 69% of events occur-
ring in the afternoon rainfall hours that make up 20% of the
day (Figure 10).
[44] An analysis of average 10 min rainfall rates at the

three meteorological stations closest to a recorded event
(Figure 11) shows that activity of near-surface sources coin-
cided mainly with peak rainfall rates during storms. Taking
into consideration the rainfall during 12 h either side of a
recorded event, the kurtosis Kurt of the rainfall time-intensity
distribution, Kurt12 is 11.07, where Kurt =E(x�μ)4/σ4,
where μ is the mean of the rainfall time-intensity distribution
x, σ is the standard deviation of x, E(t) is the expected value of
the quantity t, and the subscript 12 denotes the time interval
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in hours. This very high kurtosis value reflects the marked
peakness of the distribution, centered on the highest rainfall
rates. For 3 and 2 h either side of an event, Kurt3 = 3.13 and
Kurt2 = 2.33, respectively, indicating increased spread within
these shorter time windows. This suggests that near-surface
events could also be associated with high rainfall rates at
other times during a rainstorm, but with a lesser likelihood.
Importantly, the time-intensity distribution of rainfall relative
to the recorded events was mildly positively skewed.
Defining skewness, Skew=E(x�μ)3/σ3, where μ is the
mean of the rainfall time-intensity distribution x, σ is the
standard deviation of x, E(t) is the expected value of the
quantity t, and Skew2 = 0.72 and Skew3 = 1.13 for time
windows of 2 and 3 h either side of an event, respectively.
These small, positive values indicate that the rainfall preced-
ing a recorded near-surface event did not prejudice the
likelihood of that event. Instead, the recorded events were
driven principally by instantaneous high rainfall rates, inde-
pendent of prior rainfall.
[45] The frequency of detected near-surface events was

positively correlated with 10 min catchment average rainfall
(Figure 11). At rainfall rates below 1mm in 10min, the like-
lihood of occurrence of a detected event was about 1 × 10�3

per 10min interval. For higher rainfall rates, the event likeli-
hood increased exponentially, reaching about 1 × 10�2 per
10min for rainfall rates around 6mm in 10min. The relation
between rainfall rate and event likelihood has an exponential
best fit,Fevent = (e

(0.37×P))/1240, whereFevent is the frequency of

seismically detected near-surface events per 10min interval and
P is the catchment-average 10min rainfall rate (R2 = 0.88).
[46] The significant simultaneity of convective rainfall and

seismically recorded near-surface events and the systematic in-
crease of event frequency with rainfall rate suggest that they are
geomorphic in nature. Their short duration, coincidence with
peak rainfall, and independence of antecedent precipitation
match with hillslope processes that do not depend on the satura-
tion state of underlying soil or regolith, such as rockfalls and
minor rock avalanches, bank collapses, and debris slides. The
rate with which these events occurred increased sharply with
rainfall rate during the survey period in the Chenyoulan catch-
ment. The nature of this relation between the rates of erosion
and rainfall, though, is likely to be subject to spatial variation,
even at the scale of the catchment. This is considered next.
[47] If rainfall is a principal driver of seismically recorded

near-surface events in the Chenyoulan catchment, then there
should also be a demonstrable link between the spatial
patterns of rainfall intensity and event locations. This is
indeed the case, but in a way that is complicated by other
factors, as illustrated by the example of 2 days with similar,
intense convective precipitation (Figure 12). Both days had
up to about 60mm of precipitation over a period of 4 h, but
on Day 194, rainfall peaked in the center of the catchment,
whereas it was most intense in the north on Day 198.
Eleven seismically recorded events on Day 194 were located
mainly in areas with the highest rainfall rate, suggesting that
total daily rainfall was a control on their location. However 4
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days later, nine seismically located events were dispersed
across the catchment and away from areas with highest pre-
cipitation rates. Thus, instead of total daily rainfall, another
aspect of the meteorological condition must have governed
the location and timing of these events. One possibility is that
recorded events were driven by short bursts of intense rain-
fall, which may have occurred away from locations with
highest daily rainfall totals. Alternatively, elements of the
topography of the Chenyoulan catchment may have been
preconditioned for erosional events on a longer time scale.
In this case, short intense rainfall in unstable topography may
have played a role. On Day 198, the recorded near-surface
activity coincided mostly with peak 10 min rainfall rates at
the nearest station, strongly suggesting that they were triggered
by brief but intense precipitation. However, the maximum
recorded rainfall rates near locations of near-surface activity
(1.5–4.0mm/10min) were not necessarily the highest rates
recorded in the catchment during the storm of day 198
(20mm/10min). Four other examples, shown in the supporting
information material (Figure S4), further illustrate this com-
plexity. Hence, the sensitivity to rainfall drivers does not appear
to have been uniform throughout the Chenyoulan catchment. A
full analysis of this sensitivity is beyond the scope of this study.

5.2. Fluvial Masking of Hillslope Signals

[48] Rainfall-driven runoff of water in the catchment gives
rise to enhanced stream flow and river sediment transport
generating seismic noise. Due to overlap of the principal
frequency bands of seismic signals from hillslope and river
processes, river noise may limit the ability to seismically

detect mass wasting events elsewhere, especially when the
meteorological conditions favor hillslope activity. To explore
this limitation, we have compared the number of detected
near-surface events with the total precipitation and the aver-
age seismic noise level recorded at our stations for individual
rainstorms lasting more than 2 h (Figure 13). This analysis
was restricted to the 20–30 Hz frequency band, which can
register signals from rapid mass wasting as well as fluvial
bed load transport. For rainstorms with precipitation totals
ranging from 3 to 105mm, we have found a strong and sys-
tematic increase of the minimum seismic energy by ~12 dB,
which corresponds to amplitudes 4 times higher on
seismograms. We interpret this increase to reflect the rise in
river noise with rising discharge and sediment transport.
Above this minimum level, the recorded seismic energy
varied by as much as 8 dB between storms with similar
magnitude, over the limited precipitation range covered by
our records. This may be due to varying levels of geomorphic
activity on hillslopes in the area. Indeed, at lower precipita-
tion totals, recorded seismic energy levels broadly correlated
with the number of detected near-surface events, probably
hillslope mass wasting. The paucity of larger storms during
the monitoring interval precludes an evaluation of this appar-
ent correlation at higher rainfall totals. However, if our inter-
pretations are correct, then seismic energy from hillslope
processes is added to the river signal, so that the general level
of hillslope activity could be constrained if a relation between
rainfall rate and river noise can be established independently.
In mountain settings such as the Chenyoulan catchment, this
relation is complicated by the fact that the river sediment load
derives largely from adjacent hillslopes, causing variations in
sediment concentrations by up to an order of magnitude for
any given flood discharge [Hovius et al., 2000, Dadson
et al., 2003], with attendant consequences for seismic energy
levels. It is also clear that at elevated levels of river activity,
the seismic signals of individual small hillslope events will
become progressively masked, leaving only larger geomor-
phic events detectable. The global, negative relation between
geomorphic event size and frequency [cf.Hovius et al., 1997;
Stark and Guzzetti, 2009] may then cause a reduction of the
number of detected events even though the rate of geomor-
phic activity can be assumed to increase with increased
precipitation. At present, we do not have enough information
to quantitatively explore these issues and their consequences
for seismic detection of geomorphic process events.

6. Conclusions and Perspective

[49] Geomorphic processes have distinct seismic signals
that can be registered by common seismometers. Therefore,
it should be possible to monitor geomorphic activity in
continuous mode and at the catchment scale with 2-D arrays
of seismic instruments. This method has the potential to give
a combination of spatial and temporal coverage and resolu-
tion that is not achievable through classic methods such as
optical remote sensing and in situ observation. With an array
of 14 seismometers and using a seismic detection approach
and location technique based on the analysis of seismic
amplitudes and their temporal features, we have detected
and located 314 surface or near-surface events, with a mean
accuracy of 1 km during the 2010 typhoon season in the
370 km2, mountainous Chenyoulan catchment, central
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Taiwan. The geomorphic nature of these events could not be
confirmed from high-resolution satellite imagery and aerial
photography, which did not show any geomorphic change
over a monitoring interval of 100 days. However, their sys-
tematic association with specific meteorological conditions,
which is unlikely for other potential sources at or near
Earth’s surface, underlines the plausibility of a geomorphic
interpretation of these signals. In the absence of extreme
and prolonged rainfall during the monitoring period, nor-
mally associated with passage of large typhoons, 69% of
the detected events occurred during convective afternoon
rainstorms with measured precipitation rates and totals of
up to 18mm/h and 43mm, respectively. Within these
rainstorms, detected events typically coincided with the
highest recorded precipitation rate, irrespective of antecedent
rainfall, suggesting that the triggered processes were driven
by high instantaneous rainfall rates rather than cumulative
precipitation. Moreover, the incidence rate of detected events
increased exponentially with rainfall rate over the limited
range of conditions during our study. The rainstorms during
this period did not drive any large-scale landsliding, which
dominated the catchment in the previous decade, and instead
we tentatively attribute the recorded near-surface events to
distributed, small-scale mass wasting and occasional debris
flows. In contrast to the timing, the spatial pattern of seismi-
cally detected events did not systematically correlate with
rainfall patterns. In some large rainstorms, most geomorphic
activity coincided with the rainfall maximum, but not in others,
highlighting the possible importance of site preconditioning,
thresholds, and/or short-lived rainfall peaks, in addition to the
physical characteristics of local slopes and substrates in setting
the pattern and rate of erosion.
[50] On balance, it is highly unlikely that the recorded

near-surface events were systematically associated with
nongeomorphic sources. Instead, they probably represent the
ensemble of significant erosional activity in the Chenyoulan
catchment during the 100 day recording interval in 2010.
Within uncertainty, the majority of the events (61%) were
collocated with preexisting geomorphic structures (land-
slide scars, gullies). The likelihood of this association arising
by accident in the Chenyoulan catchment is negligible. At
sites of recent erosion, absence of vegetation precluded
visual detection of renewed geomorphic activity. The seis-
mically detected events then were most likely rockfalls,
rock avalanches, minor landslides, and bank collapses at
sites with prior activity within the past decade with addi-
tional activity on very steep slopes or under the cover of
forest vegetation. However, we do not have an independent
verification of this interpretation.
[51] Our results illustrate the potential and the challenges

of seismic monitoring of geomorphic processes at the
catchment scale. First, when fully proven, this approach will
permit the detection and location of a range of geomorphic
processes that occur throughout the landscape. Second, it
could allow detection of events that remain invisible to extant
remote-sensing techniques due to absence or opacity of veg-
etation, cloud cover or topographic overlay, and reactivation
of existing erosion sites, thus complementing assessments of
erosion based on optical remote sensing, which are prone to
chronic underestimation of small events [cf. Brardinoni and
Church, 2004]. And third, the approach could enable explo-
ration of the relation between (meteorological) triggers and

geomorphic response in temporal detail limited only by the
frequency and density of the record of forcing and the spatial
resolution of the seismic detection. The spatial resolution and
sensitivity of seismic detection of near-surface events are lim-
ited by the location and distance between stations in a 2-D array.
In our study, uncertainties on event location were 9% of the
average distance between stations. It may be expected that
reduction of this distance results in improved spatial resolution
and location accuracy by enhancing the coherence of seismic
signals between stations, but the precise nature of the trade-off
between station distance and spatial resolution remains to be
constrained. It should also be noted that seismic detection of
individual near-surface events is hampered during rainstorms
by elevated noise from turbulence and sediment transport in
flooding rivers, making it essential to have a balance of stations
located near and far frommajor river channels for monitoring of
all geomorphic activity in a catchment.
[52] Further development of this approach must include a

full analysis of detection limits, spatial resolution, and accu-
racy. Outstanding questions include the following: What is
the relation between station spacing and spatial resolution?
How accurate are seismically determined event locations
when compared with independent, visual constraints? Can
we constrain the source energy of a geomorphic event, or
its magnitude, from recorded energy levels? What is the min-
imum event size that can reliably be detected? And what is
the level of geomorphic activity such that the technique can
no longer distinguish between individual geomorphic
events? Farther down the line, it could be envisaged that this
technique can be deployed for automated, real-time detection
of geomorphic process events, such as rock avalanches, land-
slides, debris flows, and migrating bed load pulses, on the
landscape scale. This would require isolation of the unique
seismic characteristics of individual geomorphic processes,
as well as efficient telemetry of seismic records, and could
become a useful tool in natural hazard monitoring, early
warning, and risk reduction. In the more immediate future,
seismic monitoring of geomorphic processes at the landscape
scale holds exciting potential for study of the minimum and
necessary conditions for mass wasting, the relation between
external forcing and geomorphic response, the transfer of
eroded materials between process domains, and the relation
between geomorphic activity and sedimentary product.
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