The deep structure of south-central Taiwan illuminated by seismic tomography and earthquake hypocenter data

Giovanni Camanni a,⁎, Joaquina Alvarez-Marron a, Dennis Brown a, Concepcion Ayala a,1, Yih-Min Wu b, Hsien-Hsiang Hsieh c

a Institute of Earth Sciences JAIME Almera, ICTJA-CSIC, Lluis Sole i Sabarís s/n, 08028 Barcelona, Spain
b Department of Geosciences, National Taiwan University, Taipei 106, Taiwan
1 Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan

A R T I C L E I N F O

Article history:
Received 15 January 2015
Received in revised form 11 June 2015
Accepted 20 September 2015
Available online 30 September 2015

Keywords:
Basement-cover interface
Detachment
Base ment involvement
Structural inheritance
Taiwan
Earthquake seismicity

A B S T R A C T

The Taiwan mountain belt is generally thought to develop above a through-going basal thrust confined to within the sedimentary cover of the Eurasian continental margin. Surface geology, magnetotelluric, earthquake hypocenter, and seismic tomography data suggest, however, that crustal levels below this basal thrust are also currently being involved in the deformation. Here, we combine seismic tomography and earthquake hypocenter data to investigate the deformation that is taking place at depth beneath south-central Taiwan. In this paper, we define the basement as any pre-Eocene rifting rocks, and use a P-wave velocity of 5.2 km/s as a reference for the interface between these rocks and their sedimentary cover. We found that beneath the Coastal Plain and the Western Foothills clustering of hypocenters near the basement-cover interface suggests that this interface is acting as a detachment. This detachment is located below the basal thrust proposed from surface geology for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure for this part of the mountain belt. Inherited basement faults appear to determine the geometry of this detachment, and their inversion in the Alishan area result in the development of a basement uplift and a lateral structure for this part of the mountain belt.

1. Introduction

The Taiwan mountain belt has been forming since the Late Miocene as a result of the oblique collision between the southeast continental margin of Eurasia and the Luzon volcanic arc on the Philippine Sea Plate (Byrne et al., 2011; Huang et al., 2006; Lin et al., 2003; Mesalles et al., 2014; Sibuet and Hsu, 2004; Suppe, 1981, 1984; Teng, 1990) (Fig. 1). Studies of the structure of the western flank of the Taiwan mountain belt have led many authors to suggest that it is evolving by thrusting above a shallowly east-dipping basal thrust that extends all the way eastward beneath the orogen (Carena et al., 2002; Ding et al., 2001; Malavieille and Trullenque, 2009; Suppe, 1980, 1981; Suppe and Namson, 1979; Yue et al., 2005). Although both along- and across-strike variations in the depth and stratigraphic location of the basal thrust have been proposed, it is generally thought to be confined to within the sedimentary cover of the margin, either at the base of the syn-orogenic sediments or within the older pre-orogenic platform and slope sediments (Brown et al., 2012; Suppe, 1976, 1980, 1981; Suppe and Namson, 1979; Yue et al., 2005). There are, however, a number of pieces of evidence in the surface geology (Alvarez-Marron et al., 2014; Brown et al., 2012; Camanni et al., 2014a), as well as in magnetotelluric (Bertrand et al., 2009, 2012), GPS (Chuang et al., 2013), earthquake hypocenter (Gourley et al., 2007; Lacombe and Mouthereau, 2002; Lacombe et al., 2001; Mouthereau and Petit, 2003; Wu et al., 1997, 2004, 2008, 2014; Yue et al., 2005) and seismic tomography data (Alvarez-Marron et al., 2014; Camanni et al., 2014b; Huang et al., 2014; Kim et al., 2005, 2010; Kuo-Chen et al., 2012; Lin, 2007; Rau and Wu, 1995; Wu et al., 2007) which suggest that rocks below the interpreted basal thrust, and even the basement (here, according to Ho(1986, 1988), we define basement as any pre-Eocene rifting rocks, but it is often defined by others as any pre-Miocene rocks) may also be involved in the deformation in much of Taiwan. For example, combining surface geological and borehole data,
Hickman et al. (2002) and Hung et al. (1999) interpret the basal thrust to cut down section to lie near the basement-cover interface. Similarly, seismic activity beneath the interpreted location of the basal thrust in west-central and southwestern Taiwan also led Mouthereau and Petit (2003) and Yue et al. (2005) to postulate the presence of a second, deeper detachment surface that lies either near the basement-cover interface or within the basement. Furthermore, on the basis of surface geological, borehole and seismicity data, Mouthereau et al. (2001, 2002), Lacombe and Mouthereau (2002), and Mouthereau and Lacombe (2006), interpret the basement (note that they call basement any pre-Miocene rocks) to be involved in the deformation along much of westernmost Taiwan. Eastward, Brown et al. (2012), Camanni et al. (2014a, b), and Chuang et al. (2013) use either surface geology, seismicity, or GPS data to interpret the basal thrust to ramp down into the middle crust and to involve basement in the deformation. These latter observations are further corroborated by the presence of high P-wave velocities (up to 5.5 km/s) close to the surface, suggesting that basement rocks are being uplifted (e.g., Alvarez-Marron et al., 2014; Camanni et al., 2014b; Huang et al., 2014; Kim et al., 2005, 2010; Kuo-Chen et al., 2012; Lin, 2007; Rau and Wu, 1995; Wu et al., 2007). Furthermore, in much of Taiwan Wu et al. (1997, 2004, 2014) and Gourley et al. (2007) have used earthquake hypocenter data to suggest that there are a number of steeply dipping faults that penetrate into the middle and perhaps even the lower crust.

These observations suggest that deformation that is taking place near the basement-cover interface and within the basement may be playing a more significant role in the structural development of the Taiwan orogeny than predicted by the model with a basal thrust confined to within the sedimentary cover. To help place further constraints on the structural architecture of the Taiwan mountain belt, in this paper we use a P-wave tomography model to define a proxy for the basement-cover interface in south-central Taiwan (Figs. 1 and 2). We then use earthquake hypocenter data to evaluate the location and the geometry of deep-seated faults that are contributing to the deformation that is taking place in this part of Taiwan.

2. Geological setting

The outcropping geology of the south-central part of the Taiwan mountain belt (Figs. 1 and 2) is made up of Eocene to Miocene sediments of the continental margin overlain by Pliocene to Holocene syn-orogenic sediments of the foreland basin (Brown et al., 2012; Hickman et al., 2002; Hung et al., 1999; Lacombe et al., 1999; Mouthereau et al., 2001; Rodriguez-Roa and Wiltschko, 2010; Yue et al., 2005). Basement...
rocks do not crop out within the study area, although they have been intersected in a number of boreholes (Chiu, 1975; Jahn et al., 1992; Mouthereau et al., 2002; Shaw, 1996). This basement predominantly comprises clastic sediments of Jurassic and Cretaceous age (Chiu, 1975; Shaw, 1996), although there is some dispute as to the correctness of these ages (e.g., Chiu, 1975). Only in one borehole in the southern part of the study area (CLI-1, Fig. 2) has marble been found, from which a Pb–Pb isochron age of 242 ± 22 Ma, or Triassic, has been determined (Jahn et al., 1992).

In this part of Taiwan, the mountain belt can be roughly divided into four tectonostratigraphic zones separated by major faults (Figs. 1 and 2). From west to east these zones are: the Coastal Plain, the Western Foothills, the Hsuehshan Range, and the Central Range. The Coastal Plain is made up of weakly deformed Pliocene to Holocene syn-orogenic sediments of the foreland basin, while the Western Foothills comprise a west-verging thrust system that imbricates the Miocene pre-orogenic and the younger syn-orogenic sediments (Alvarez-Marron et al., 2014; Brown et al., 2012; Hickman et al., 2002; Hung et al., 1999; Lacombe et al., 1999; Rodriguez-Roa and Wiltschko, 2010; Yue et al., 2005). In much of central and southern Taiwan, the boundary between the Coastal Plain and the Western Foothills is generally interpreted to coincide with the tip line of the Changhua Thrust (Fig. 2), which is usually presented as the deformation front of the Western Foothill thrust system (Ching et al., 2011b; Hsu et al., 2009; Yu et al., 1997). In the southwestern part of the study area, however, on the basis of seismicity, GPS, and geomorphology data, some authors place it farther west (Fig. 2; Lin and Watts, 2002; Shyu et al., 2005; Yang et al., 2007). The Western Foothill thrust system appears to be linked to an east-dipping basal thrust that, in the northernmost part of the map area, is located at the base of the syn-orogenic sediments (Brown et al., 2012; Carena et al., 2002; Mouthereau and Lacombe, 2006; Mouthereau et al., 2002; Suppe, 1981; Yue et al., 2005), while in the central and southern parts it cuts down section into Miocene sediments (Alvarez-Marron et al., 2014; Hickman et al., 2002; Lacombe et al., 1999; Mouthereau and Lacombe, 2006; Mouthereau and Petit, 2003; Mouthereau et al., 2001, 2002; Suppe, 1976; Suppe and Namson, 1979) and, locally, may lie within undifferentiated pre-Miocene rocks (Hickman et al., 2002; Hung et al., 1999).

In the north of the study area, the Western Foothills are juxtaposed against the Hsuehshan Range across the Shuilikeng Fault (Brown et al., 2012; Camanni et al., 2014a) (Fig. 2). The Hsuehshan Range is made up of variably metamorphosed (Beyssac et al., 2007; Sakaguchi et al., 2007; Simoes et al., 2012) Eocene and Oligocene clastic sediments that were deposited in the so-called Hsuehshan Basin (Ho, 1988; Huang et al., 1997; Teng and Lin, 2004). The Hsuehshan Range is juxtaposed against the Central Range in the east across the Lishan Fault (Brown et al., 2012; Camanni et al., 2014b; Clark et al., 1993; Lee et al., 1997). Southward, the Central Range is juxtaposed against the Western Foothills along the Chaoshou Fault (Mouthereau et al., 2002; Tang et al., 2011; Wiltschko et al., 2010). The outcrop geology of the Central Range within the study area is made up of Miocene rocks of the Lushan Formation (Beyssac et al., 2007; Brown et al., 2012; Lee

Fig. 2. Major geological features of the study area. Fault traces are from our own field data with the exception of the deformation front in the southwestern part of the study area, which is from Shyu et al. (2005). The structure offshore south-central Taiwan is from Lin et al. (2003), as are the contours representing the top of the basement. The location of the borehole discussed in the text is shown, as is the location of Figs. 3, 5, and 6. Fault abbreviations: BF, “B” Fault; ChF, Chaoshou Fault; ChT, Changhua Thrust; Df, Deformation front; LF, Lishan Fault; SkF, Shuilikeng Fault; YF, Yichu Fault.
3. Data and methodologies used

In what follows in Section 4, we use the 3D P-wave velocity model of Wu et al. (2007) in combination with earthquake hypocenter data to investigate the deep structure of south-central Taiwan. The 3D P-wave velocity model is used to determine a proxy for the location and geometry of the basement-cover interface. The reader is referred to Wu et al. (2007) for the data, the methodology used in the tomography inversion, and the resolution testing. Importantly for this study, the horizontal resolution of the model in the study area is 7.5 km in the WNW–ESE direction by 12.5 km in the NNE–SSW direction, whereas the depth resolution is 2 km from 0 to 6 km depth, 3 km from 6 to 9 km depth, 4 km from 9 to 25 km depth, and then 5 km to the base of our data set at 30 km depth.

Earthquake hypocenter data from 1990 to 2011 were first located in the 3D P-wave velocity model using the methodology of Wu et al. (2008). Hypocenters were subsequently collapsed (relocated) using the methodology of Jones and Stewart (1997). Collapsing involves the determination of statistical measurements for standard errors in the depth, latitude and longitude for each event (ERH and ERZ in the database of Wu et al. (2008)) and the clustering of events with overlapping error spheres. A 3D spatial uncertainty of 4 standard deviations was used to truncate confidence ellipsoid and estimated variance in the data. During this process, hypocenter movements were compared with χ^2 distribution and repeated until a minimum misfit was reached.

In the description of the velocity model that follows in Section 4.2, vertical and horizontal slices were cut through the volume and the collapsed hypocenters were projected on to them. The vertical sections were cut perpendicular to the strike of the surface geological structures and perpendicular to the strike of the extensional fault systems imaged offshore southwest Taiwan and beneath its western Coastal Plain (e.g., Lin et al., 2003). Horizontal slices were cut through the nodal points of the velocity model grid.

Since defining the location and geometry for the top of the basement is of primary importance in this study, we first looked at laboratory measurements carried out on clastic rocks similar to those described as pre-Eocene in boreholes within the study area. These laboratory measurements indicate that weakly metamorphosed polymictic clastic sediments (e.g., dry sandstone) at a depth of between 5 and 15 km, and at temperatures thought to occur at these depths in Taiwan (Wu et al., 2013; Zhou et al., 2003), have a P-wave velocity of ± 5 km/s (Christensen, 1989; Christensen and Stanley, 2003; Johnston and Christensen, 1992, 1993). We therefore chose a P-wave velocity of 5.2 km/s as a velocity description for these rocks, and the 5.2 km/s isovelocity surface as a proxy for the top of the pre-Eocene lithological basement within the study area. We stress, however, that this definition is one of physical properties and it may not coincide with the top of the lithological basement everywhere. In the absence of direct data it nevertheless serves as a marker horizon that helps with the first order interpretation of the crustal structure. Furthermore, tests made using velocities between 5 km/s and 5.5 km/s resulted in isovelocity surfaces that overall show a similar geometry, and plot in a similar location and at a similar depth (see Supplementary Fig. 1). Finally, a velocity of 5.2 km/s for the top of the pre-Eocene basement is also consistent with estimates of Van Avendonk et al. (2014) that interpret the basement to Miocene sediments in the Western Foothills of Taiwan to coincide with a P-wave velocity of 5.0 km/s, and with those of Eakin et al. (2014) who interpret the basement to the platform sediments offshore Taiwan to have a P-wave velocity above 5.0 km/s. It is, however, slightly higher than the c. <5 km/s given to basement by Chen and Yang (1996) and Tang and Zheng (2010).

4. Results

4.1. The basement-cover interface

The basement-cover interface as defined by the 5.2 km/s isovelocity surface (Fig. 3) deepens southward beneath the Coastal Plain and the Western Foothills from c. 8–10 km to c. 15 km, whereas it shallows eastward to less than 4 km depth beneath the Hsuehshan and Central ranges. An exception to this overall trend occurs in the central part of the map area where, immediately to the east of the Changhua thrust, it begins to shallow, defining a basement high that we call the Alishan Uplift (Alvarez-Marron et al., 2014) (AU, Fig. 3). The depth of the basement-cover interface determined in this way is overall deeper than that previously proposed from beneath the Coastal Plain, where its location is derived from borehole and seismic reflection data (Lin et al., 2003). The differences in depth between the two interpretations are on the order of several kilometers (see Supplementary Fig. 2 for comparison and a misfit calculation). These differences can be related to a number of factors, including: 1) the vertical resolution of the P-wave velocity model used here, 2) the depth conversion of time-migrated seismic reflection data by Lin et al. (2003) and, 3) the choice of 5.2 km/s as marking top basement. Moutheau et al. (2002) also produce a top-basement contour map, but in their case this implies any pre-Miocene rocks so it is not possible to do a direct comparison with our results. Only one borehole (CLI-1, Fig. 2) unequivocally intersects Mesozoic basement in our study area (e.g., Chiu, 1975; Jahn et al., 1992; Shaw, 1996) and its location at -461 m is significantly deeper than our interpretation. Despite these inconsistencies in the depth between interpretations, the overall geometry of the top of the basement obtained by the 5.2 km/s isovelocity surface, especially its southward deepening, is consistent between models. Note that the interpretation presented here extends into the Western Foothills, Hsuehshan, and Central ranges whereas those of Lin et al. (2003) and Moutheau et al. (2002) do not.

![Fig. 3. Depth distribution of the 5.2 km/s isovelocity surface, which we interpreted to be at or near the basement-cover interface. Fault abbreviations are as in Fig. 2. AU, Alishan Uplift. Location of the map is given in Fig. 2.](image-url)
4.2. The basement-cover interface and earthquake hypocenters

Having established our working definition for the basement-cover interface, its location, depth, and geometry, we now proceed with the descriptions of the velocity and hypocenter data using the 5.2 km/s isovelocity surface as a reference.

In the P-wave velocity sections oriented perpendicular to the strike of the surface structures, the basement-cover interface (the 5.2 km/s isovelocity line) shows a marked shallowing from west to east (Fig. 4A), with the change taking place approximately at the Shuilikeng Fault in the north (sections A-A', B-B', and C-C') and the Chaochou Fault in the south (sections D-D', E-E', and F-F'). West of the Shuilikeng and...
Chaochou faults, earthquake hypocenters form a well-defined, sub-horizontal cluster near the basement-cover interface. Nevertheless, in the collapsed data set it is not possible to make a direct correlation between any fault mapped at the surface and the hypocenter data forming this sub-horizontal cluster, although other authors have attempted this with un-collapsed data (e.g., Wu et al., 2003). As the basement-cover interface deepens to the south, however, there is a significant reduction in the number of events (i.e., in sections E-E' and F-F') (see also Fig. 5). From approximately the Shuilikeng and Chaochou faults to the east, hypocenters form a moderately east-dipping cluster that locally extends to a depth of more than 20 km. This feature is particularly well developed in sections A-A', E-E', and F-F' (Fig. 4A). Farther east, seismicity is diffuse. This deepening of the seismicity coincides with a marked shallowing of the basement-cover interface (Figs. 4 and 5). An exception to this relationship between the basement-cover interface and the seismicity is a well-defined cluster that begins near the Shuilikeng Fault and extends westward in sections B-B', C-C' and G-G'. This cluster (named LuF in Figs. 4 and 5) is related to a series of earthquakes that were observed before, but predominantly after the 1999 Chi-Chi event (Wu et al., 2004) that, in 3D, has a tubular shape, and in which strike-slip focal mechanisms dominate (Wu et al., 2010). Wu et al. (2004) and Lee and Shih (2011) suggest that this seismicity is related to the Luliao Fault.

In the sections perpendicular to the extensional faults imaged offshore southwest Taiwan and beneath the Coastal Plain, the southward deepening of the basement-cover interface is particularly well-defined in sections J-J' and K-K' (Fig. 4B). In the sections that cross the Shuilikeng and Chaochou faults (G-G' through to J-J') the marked shallowing of the basement-cover interface is also imaged. In sections G-G' to I-I', hypocenters form sub-horizontal clusters near the basement-cover interface, although in section H-H' a weakly developed vertical cluster can also be identified; it extends down to a little over 15 km depth. Section J-J' displays moderately SSE-dipping, tight to open clusters of hypocenters together with the sub-horizontal events. Together they define an overall deepening of the basement-cover interface with a rugose or step-like geometry. Section K-K' shows very clearly the SE-deepening of the basement-cover interface and, where it is at its deepest, the almost complete absence of seismicity (Figs. 4B and 5).

Throughout the study area, there is a notable difference between the location of the deformation front and the western limit of the seismicity (as defined by a significant reduction in the number of earthquakes). To demonstrate this, all hypocenters from 0 to 30 km depth are projected onto a map of the surface geology of the Coastal Plain and the Western Foothills within the study area (Fig. 6). In the northern part of the map area the majority of the seismicity is east of the deformation front as defined by the Changhua thrust tip line, whereas southward it locally

Fig. 5. Horizontal slices through the 3D P-wave velocity model (Wu et al., 2007) and the relocated (Wu et al., 2008) and collapsed seismicity dataset used in this study. The depth intervals are dependent on the vertical resolution of the 3D P-wave velocity model. Hypocenters (shown as black dots) are projected from 0.99 km on either side of the horizontal slices. Seismic events range up to $\sim 7 M$. Dashed white line indicates the 5.2 km/s isovelocity line. Fault abbreviations are as in Fig. 2. Location of the maps is given in Fig. 2.
SSE-dipping extensional faults that have been grouped together and extend up to 6 km, and these are overlain by up to 7 km (in the Southern Oligocene and Miocene sediments in the Tainan Basin offshore reaches called the Central Uplift (Fig. 7, section X-X′)). The Tainan Basin comprises two fault-bound depocentres called the Central Uplift and the offshore area. Shyu et al. (2005; Yang et al., 2007; Yu et al., 1997).

2) Ding et al., 2008; Huang et al., 2004; Lester et al., 2014; Li et al., 2007; Lin et al., 2003; McIntosh et al., 2013; Tang and Zheng, 2010; Yang et al., 2006).

5. Discussion

5.1. The deep structure of south-central Taiwan

The Eurasian continental margin that is entering into the collision currently taking place in Taiwan has been extensively studied, in particular in the offshore to the southwest (Ding et al., 2008; Eakin et al., 2014; Huang et al., 2004; Lester et al., 2014; Li et al., 2007; Lin et al., 2003; McIntosh et al., 2013; Tang and Zheng, 2010; Yang et al., 2006). This area of the margin comprises the platform (full thickness of the continental crust), the slope (starting at the 200 m bathymetry contour, Figs. 1 and 2), and the continent-ocean transition. On the outer platform to slope areas of the margin Miocene extension resulted in the development of the deep Tainan Basin offshore southwest Taiwan (Figs. 1 and 2) (Ding et al., 2008; Huang et al., 2004; Lester et al., 2014; Li et al., 2007; Lin et al., 2003; Tang and Zheng, 2010; Yang et al., 2006). The Tainan Basin comprises two fault-bound depocentres called the Northern and Southern depressions, separated by a structural high called the Central Uplift (Fig. 7, section X-X′). The thickness of the Oligocene and Miocene sediments in the Tainan Basin offshore reaches up to 6 km, and these are overlain by up to 7 km (in the Southern Depression) of Pliocene to Holocene syn-orogenic sediments (Lin et al., 2003). The Tainan Basin is bound to the north by a system of SSE-dipping extensional faults that have been grouped together and called “B” (Lin et al., 2003) or Meishan (Yang et al., 2007) and Yichu faults (Fig. 2) (Lin et al., 2003). Although there are a number of very different structural interpretations for the extensional fault geometries of the Tainan Basin (e.g., Chen and Yang, 1996; Huang et al., 2004; Lin et al., 2003), the overall regional-scale architecture can be interpreted to project onshore where it appears to be imaged by the step-like geometry of the hypocenter cluster and overall southward deepening of the basement-cover interface in section J-J′ (Fig. 7).

While this rugose geometry of the hypocenter cluster is not well-developed everywhere (in the offshore Lester et al. (2013) and Eakin et al. (2014) have imaged a similar rugose detachment at the basement-cover interface), from the Shuilikeng and Chaochou faults to the west there is nevertheless a well-defined clustering of hypocenters near the basement-cover interface as we define it (Fig. 4). The clustering of hypocenters at the basement-cover interface suggests that it is acting as a detachment surface (Fig. 7), with its western limits coinciding with the seismicity front (as defined in Section 4.2). This, taken together with the rugose nature of the hypocenter cluster imaged in section J-J′ may indicate that the original basement structure of the continental margin (i.e., section X-X′ in Fig. 7) is preserved in the southwestern part of the Taiwan mountain belt. It may also indicate that the extensional fault systems developed on the outer platform to slope maintain at least some of their original extensional displacement in this part of the mountain belt (Fig. 7). However, the development of the Alishan Uplift in the central part of the map area appears to indicate that these faults are locally being reactivated (Alvarez-Marron et al., 2014).

The deep level (≥10 km) of the hypocenter cluster along the basement-cover interface make it difficult to link the geometry of the thrust systems developed at the surface (Alvarez-Marron et al., 2014; Hickman et al., 2002; Lacombe et al., 1999; Moutheareau et al., 2001; Suppe, 1976; Suppe and Namson, 1979) to a detachment at this depth (see Yue et al. (2005) for a discussion of this point). This suggests that there might be a deeper, active level of detachment near the basement-cover interface that is located beneath the basal thrust of the upper thrust system throughout a large part of south-central Taiwan. Both appear to be active at the same time, although seismicity seems to be largely taking place along the deeper of the two.

There is a considerable change in the surface geology across the Shuilikeng, Lishan, and Chaochou faults (Fig. 7) that is clearly expressed in the P-wave velocity and hypocenter data (Figs. 3, 4, and 5). To the west of these faults the deformation is confined to shallow crustal levels, whereas to the east the hypocenter cluster deepens to greater than 20 km depth and coincides with higher P-wave velocity material closer to the surface. In the northern part of the study area, Brown et al. (2012) and Camanni et al. (2014b) suggest that this is related to the uplift of basement rocks between the Shuilikeng and Lishan faults (sections A-A′ in Figs. 4A and 7). With the current data set we can interpret this same process (uplift of basement rocks) to extend southward along the Chaochou Fault, where the sub-horizontal cluster imaged to the west takes on an eastward dip and extends to 20 km or more depth (sections E-E′ and F-F′ in Figs. 4A and 7). In this interpretation the detachment located near the basement-cover interface beneath the Coastal Plain and the Western Foothills ramps down section to merge with the Chaochou Fault that uplift the higher velocity, denser basement rocks in the east near the surface. This interpretation implies that the Shuilikeng, Lishan, and Chaochou faults are linked together and in some way are rooted into the middle or even lower crust along this east-dipping hypocenter cluster (Fig. 7). This interpretation is in keeping with those of Ching et al. (2011a), Huang and Byrne (2014), Moutheareau et al. (2002), Tang et al. (2011), and Wiltshko et al. (2010) who also interpret the Chaochou fault to be rooted deep in the crust. With the current data set from south-central Taiwan it is not possible, however, to establish that (or even if) this detachment extends eastward into the internal part of the mountain belt, that is beneath the Central Range. The lack of seismicity beneath the internal part
of the mountain belt may indicate higher temperatures (Wu et al., 1997), and possibly that ductile (e.g., Mouthereau et al., 2009; Yamato et al., 2009) deformation could be taking place in this part of the orogen.

5.2. The influence of basement faults inherited from the Eurasian continental margin on the structural development of south-central Taiwan

One of the basic tenets in the geometric, mechanical, numerical, and analogue modeling of mountain belts is that at shallow depths beneath their flanks there is a through-going, gently-dipping detachment above which a thrust belt develops (e.g., Poblet and Lisle, 2011; Rodgers, 1990). In this model, the sedimentary cover of a continental margin is detached above a basement that is not extensively involved in the deformation (Buiter, 2012; Chapple, 1978; Dahlen et al., 1984; Dahlstrom, 1970; Davis et al., 1983; Fitz-Diaz et al., 2011; Pérez-Estaún et al., 1988, 1994; Price, 1981). While this simplified view of thrust belt architecture is widely accepted, how a rifted continental margin deforms during collision depends to a large degree on its prior morphology, structure, and rheology (e.g., Brown et al., 2011; Butler et al., 2006; Mouthereau et al., 2013; Thomas, 2006). In particular, it is a common feature in a number of thrust belts worldwide that their structure is variably influenced by the reactivation of extensional faults inherited from the rifted continental margin (e.g., Brown et al., 1999; Butler et al., 1997; Hatcher and Williams, 1986; Laubscher, 1965; Narr and Suppe, 1994; Pérez-Estaín et al., 1997; Rodgers, 1987; Schmidt et al., 1988; Wiltschko and Eastman, 1983; Woodward, 1988). During the structural evolution of a thrust belt, such inherited faults can be fully or partially inverted often resulting in the uplift of basement rocks and in the development of lateral structures in either the footwall or hanging wall (e.g., Bonini et al., 2012; Coward et al., 1991, 1999; De Paola et al., 2006; Di Domenica et al., 2014; Jackson, 1980; Madritsch et al., 2008; Molinaro et al., 2005; Sibson, 1995). In addition, they can localize deformation, causing the development of structures such as buttresses and back-thrusts (e.g., Caciello et al., 2013; de Graciansky et al., 1989; Gillcrist et al., 1987).

The results obtained in this study provide further insights into how basement faults that are inherited from a rifted continental margin may affect the structural development of a thrust belt. They indicate that the along-strike geometry of a detachment, during its early stages of development, if it is located near the basement-cover interface, may be non-planar as it adjusts to the inherited regional-scale geometry of the underlying rifted basement. This type of effect can be seen beneath the Coastal Plain and Western Foothills of south-central Taiwan where the detachment near the basement-cover interface has a rough (rugose) geometry that can be interpreted to be related to the regional-scale rift-related structure found offshore to the southwest. We suggest, therefore, that in thrust belts developed at an angle to a rifted margin, a detachment with a rough, along-strike geometry can be expected to develop. Furthermore, this detachment at the basement-cover interface, such as that described here for south-central Taiwan can be very seismically active. Finally, the local inversion of inherited basement faults can cause lateral structures and basement uplifts. An example of these is in the Alishan Uplift where inversion of rift-related faults that can be traced from the offshore is resulting in basement rocks becoming involved in the deformation (Alvarez-Marron et al., 2014). This interpretation is similar to that of other authors that suggest that pre-existing extensional faults in the Coastal Plain and Western Foothills of south-central Taiwan are being reactivated (e.g., Lacombe and Mouthereau, Fig. 7. Schematic block diagram showing the interpreted deep structure beneath the study area. Section X-X′ is drawn using the sedimentary thicknesses offshore southwest Taiwan proposed by Lin et al. (2003). Note how the deepening of the basement shown in section X-X′ can be interpreted to project onshore to section J-J′, where the large-scale structural architecture appears to be preserved. Eastward, the basement shallows across the Shuilikeng and Chaochou faults. The basement cover interface beneath the Coastal Plain and the Western Foothills appears to be acting as an extensive zone of detachment (DT) that, eastward, merges with the deep trace of the Shuilikeng and Chaochou faults. Fault abbreviations are as in Fig. 2.
even interpret seismicity in the southwesternmost part of Taiwan to be related to widespread reactivation of pre-existing extensional faults rather than to deformation taking place near the basement-cover interface as we interpret it.

Our results also show that, in south-central Taiwan, the detachment at the basement-cover interface eastward becomes a ramp into the middle crust along its entire length (i.e., the Shuilikeng–Chaochou fault system). In the hanging wall of this ramp, rocks with a relatively higher P-wave velocity that we interpret to be basement are uplifted. Along the Shuilikeng Fault, this ramp can be interpreted to be the inverted bounding fault of the Hsheshan Basin (Camanni et al., 2014a, 2014b). Southward, the significance of the Chaochou Fault in the context of the rifted margin structure is not clear. Nevertheless, the regional-scale geometry of a detachment at the basement-cover interface that, hitherto backward, becomes a ramp into the underlying basement can be found in many thrust belts worldwide (e.g., Cook et al., 1979a, 1979b; Coward, 1983a, 1983b; Hatcher and Williams, 1986; Pérez-Estaun et al., 1988). Rocks in the hanging wall of these ramps have commonly experienced middle and lower crustal metamorphic conditions and ductile deformation, indicating that they penetrate to very deep levels in the crust. This also appears to be the case for south-central Taiwan (e.g., Brown et al., 2012; Camanni et al., 2014a, 2014b) and may provide a geologic explanation for the lack of seismicity beneath the Central Range. Nevertheless, the case of Taiwan indicates that seismic activity can occur well into the middle crust along such a ramp. It also indicates the linkage and coeval deformation (denoted by the seismicity) along the whole length of a curved sole thrust ramping from the middle crust in the hinterland through a rogue detachment near the basement-cover interface in the foreland.

6. Conclusions

The combination of seismic tomography and earthquake hypocenter data presented in this paper helps define the deep structure of the south-central Taiwan mountain belt. In this paper we define a proxy for the basement-cover interface to coincide with a P-wave velocity of 5.2 km/s. These data suggest that in the west, beneath the Coastal Plain and the Western Foothills, the mountain belt is evolving above a southward deepening level of detachment that is illuminated by sub-horizontal clusters of earthquake hypocenters located near this basement-cover interface. This detachment appears to be below the basal thrust of the thrust system mapped at the surface and, in much of south-central Taiwan, the western limit of the seismicity that defines the detachment does not coincide with the deformation front of the thrust system at the surface. Eastward, the detachment at the basement-cover interface joins with an east-dipping hypocenter cluster that is interpreted to form a ramp that extends to greater than 20 km depth, into the middle crust. Above this ramp, basement rocks (P-wave > 5.2 km/s) are uplifted near the surface, forming a base ment culmination beneath the Hsheshan and Central ranges. The uplift of these basement rocks, together with the juxtaposition of higher metamorphic grade rocks across the Shuilikeng. Lishan and Chaochou faults suggests that these faults form a linked fault system that extends downward into the middle crust at the location of the ramp. Finally, the deep structures that we recognized in south-central Taiwan may provide insights into the influence of basement faults inherited from a rifted continental margin on the structural development of other thrust belts worldwide. In particular, deep-seated inherited basement faults can be shown to determine the geometry of the detachment at the basement-cover interface, as well as the development of basement uplifts and lateral structures.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.tecto.2015.09.016.

Acknowledgments

Discussions with E. Casciello, M.-M. Chen, H.-T. Chu, and A. Pérez-Estaún are acknowledged, as the help of C.-H. Chen and H.-A. Chen in the collapsing of the earthquake hypocenters. The Guest Editor J.-C. Lee, F. Mouheneau, and an anonymous reviewer are thanked for their constructive comments on the paper. The earthquake hypocenter database is available from authors or at http://seismology.gl.nctu.edu.tw/download_04.htm. The P-wave velocity model is available from authors or at http://seismology.gl.nctu.edu.tw/data/02%20PVoP%20VpVs20model.txt. This research was carried out with the aid of grants by Consejo Superior de Investigaciones Científicas (CSIC) Proyectos Intramurales 2006 301010, Ministerio de Ciencia y InnovacionCGL2009-11843-BTE and CGL2013-43877-P, and the CSIC predoctoral program Junta para la Ampliacion de Estudios (JAE-Predoc). The Generic Mapping Tools (GMT) were used to produce some of the figures.

References
