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A B S T R A C T

Many earthquake empirical models were developed based on the statistics in the past. However, it is commonly
seen that a non-local model was applied to a local study without any adjustment. In this paper, a new algorithm
using maximum likelihood estimation (MLE) to adjust a non-local model for local applications was presented,
including a case study assessing the probability of major earthquake occurrences in Taipei. Specifically,
considering the fault length of 36 km and slip rate of 2 mm/yr, it suggests the Sanchiao (or Shanchiao) fault
could induce a major earthquake with magnitude Mw 7.14±0.17, based on a non-local model integrated with
limited local data using the MLE algorithms.

1. Introduction

Given our imperfect understandings and natural randomness, many
earthquake empirical models were developed with earthquake statistics
of the past [1–6]. For example, Wu and Kanamori proposed a relation-
ship between PD3 and PGV (maximum ground displacement in the first
three seconds and peak ground velocity) that became a key empirical
relationship to on-site earthquake early warning [1]. Similarly, several
empirical models between earthquake magnitude and different fault
characteristics (e.g., fault length) were developed [2,3], which are
useful to earthquake potential assessment for a mapped fault [7,35].
Moreover, ground motion prediction equations that are essential to
seismic hazard analysis are usually an empirical model [4–6]. For
instance, Lin et al. developed a series of local ground motion models
based on the data in Taiwan [6], which were essential to seismic hazard
assessments for the region [8].

From the examples above, we can see that earthquake empirical
models play an important role in earthquake study, considering that
earthquake analytical models are still difficult to be reliably developed
(mainly owing to nature randomness and our imperfect understanding).
However, from model development to application, the following
question is often asked and encountered: Are non-local empirical
models suitable for local applications?

A possible solution to this epistemic uncertainty is to develop a local
empirical model from scratch, then applying it to any local applications.
However, for an earthquake study, the data are usually very limited

owing to the long return period of major earthquakes, making it
difficult to develop a local empirical model with a representative
sample size. As a matter of fact, in the highly-cited study by Wells
and Coppersmith [2], the proposed models were developed with data
from several regions based on a more representative sample size, with
the presumption that the data belong to the same population regardless
of locations.

On the other hand, although the local data are too limited to
develop a local model, they should be utilized in a local application
considering the higher data relevancy. As a result, for a local applica-
tion it is logical to integrate local data with non-local models based on a
robust algorithm, as maximum likelihood estimation (MLE) that was
commonly utilized in different applications and studies under such
situation [9–15]. As a result, the motivation of the study is also aiming
to use MLE to integrate a non-local model with limited local data, then
applying the newly adjusted model to the target problem for evaluating
major earthquake probabilities in Taipei, the most important city in
Taiwan.

The paper in the following is organized as follows: The geological
background of the study area is given in Section 2; an earthquake
empirical model between earthquake magnitude, fault length, and slip
rate is detailed in Section 3; the overviews of MLE, the algorithm
developed, and the model application are given in Section 4, followed
by the discussions over several issues, such as earthquake randomness
and epistemic uncertainty, that are also related to the study.
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2. The Sanchiao fault in Taipei

Taiwan is known for high seismicity owing to its location close to
the boundary of three tectonic plates in the west of the Pacific Ocean.
On average, there are around 2000 earthquakes above ML 3.0 occurring
in the region, and a catastrophic event, like the Mw 7.6 Chi-Chi
earthquake in 1999, could be able to recur in decades [16]. Conse-
quently, a variety of earthquake studies focused on the study region
were conducted and reported, from seismic hazard analyses [8], to
earthquake early warning [17,18], to earthquake statistics study
[19,20], among others [21–26].

Taipei, the most important city in Taiwan, is therefore quite
susceptible and vulnerable to earthquake hazard, not to mention the
consequence should be more severe if a major earthquake occurs in the
city (with a six-million population). As a result, the local community
has been continuously studying the potentials of major earthquakes that
could recur/occur around the city. For example, by examining the
sediment sequences from deep boreholes along the Sanchiao fault in
Taipei, the study concluded that the fault should have induced at least
three major earthquakes with magnitude around Mw 7.0 in a period of
2600 years in early Holocene [21]. Besides, by studying the so-called
neo-tectonic structures in the field, the researchers considered the
Sanchiao fault is capable of inducing a major earthquake with
magnitude above Mw 6.5 [22]; then with a Bayesian calculation, a
study suggested that the return periods of the Sanchiao earthquake
could be around 550–750 years [23]. Therefore, from the studies above
it should be understood that the Sanchiao fault is the major concern to
the (seismic) safety of the city. Fig. 1 shows the location of the fault in
north Taiwan, and the geological background of the area.

From engineering perspectives, studies like seismic hazard assess-
ment and earthquake probability evaluation were also reported for the
study area. For example, Wang et al. [8] conducted a detailed
probabilistic seismic hazard analysis (PSHA) for the city, and suggested
12 earthquake time histories that properly matched the hazard levels
for the site's performance-based, earthquake-resistant designs. On the
other hand, considering the basin topography could amplify ground
shakings, Solokov et al. [24] studied and quantified the basin effect in

Taipei by cross checking ground motion records (i.e., time histories)
inside and outside the basin. As to earthquake probability evaluation,
statistical studies on the earthquake records of the past were also
reported, aiming to estimate earthquake probabilities for some pre-
paredness work from the historical data and trend [19,20].

As shown in Fig. 1, the mapped length of the Sanchiao fault in
Taipei is commonly considered at 36 km, which have been adopted in
several applications [7,23]. In addition, the slip rate of the fault was
considered around 2 mm per year [7,23]. For other properties (such as
rupture area and displacement) that are not as essential as length and
slip rate to this study present herein, refer to the investigation report
[23] for more details.

3. Empirical relationship between earthquake magnitude, fault
length, and slip rate

Mainly based on the data from North America with a sample size of
43, Anderson et al. [3] proposed the following empirical model
between earthquake magnitude, fault length and slip rate:

M L S e σ= 5.12 + 1.16 log( ) − 0.2 log( ) + ; = 0.26w e (1)

where Mw is earthquake moment magnitude, L is fault length in km, S is
slip rate in mm/yr, and e is error term or model error. Note that the
standard deviation of e was characterized as 0.26 from the level of
sample scattering, and based on regression theory it is a random
variable following the normal distribution with mean value=0 [27].
Also note that the empirical model showing a positive correlation
between earthquake magnitude and fault length should be rational,
since a longer active fault should more possibly trigger a more extensive
rupture or displacement, leading to more energy release and causing a
bigger earthquake. On the other hand, it is also rational that the
magnitude should be negatively correlated with slip rate, considering
the possibility that a creep movement could release less strain energy
over time, then ending up with a more brittle and explosive failure at
critical points.

This model developed by Anderson et al. [3] can be considered a
continuous work of the highly-cited study (with more than 4500

Fig. 1. Location of the Sanchiao fault in north Taiwan and the geological background of the study area.
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citations as February 2017) by Wells and Coppersmith who proposed
several similar relationships based on a very comprehensive review on
global (major) earthquake data. On top of the empirical relationships,
both studies also provided statistical measures on the models’ uncer-
tainty, such as the standard deviation of model error and the coefficient
of determination. By comparing those statistical measures, Anderson
et al. [3] concluded that the inclusion of slip rate in such regressions for
earthquake magnitude predictions could reduce misfits between the
observed and predicted values more effectively than those sorely based
on fault length. Accordingly, they further suggested the model should
be used in future applications for more accurate predictions when slip
rate data are available. Considering this, a recent study firstly applying
advanced first-order second-moment (AFOSM) calculations to earth-
quake magnitude predictions [7] was therefore adopting the model as
the underlying performance function over others, in an attempt to
improve the reliability of the final estimates on the basis of the
empirical model with less aleatory uncertainty. Under the same
consideration, this study is also based on the Anderson model for
earthquake magnitude prediction, which can improve the accuracy of
the probability estimates present herein according to Anderson et al.
[3].

However, it is noted that this empirical relationship was developed
without using any local data from Taiwan. Then as mentioned
previously, a logical question will be raised as follows: Could we use
the non-local empirical model for the study area in Taipei?

A logical way to evaluate the problem is to compare the non-local
model to local data. From the literature [7,23,28], two complete sets of
local data in terms of earthquake magnitude, fault length, and slip rate
are as follows: a) Case 1: the 1999 Mw 7.6 Chi-Chi earthquake related to
the Chelungpu fault with fault length of 90 km and slip rate of 15 mm/
yr, or denoted as (7.6 Mw, 90 km, 15 mm/yr); and b) Case 2: the 1906
Mw 6.4 Meishan earthquake related to the Meishan fault with fault
length of 14 km and slip rate of 6 mm/yr, i.e., (6.4 Mw, 14 km, 6 mm/
yr). More discussion regarding the data mining is given in Section 5.3.

On the basis of Case 1 (7.6 Mw, 90 km, 15 mm/yr), we found that
the empirical model (Eq. (1)) would underestimate the earthquake
magnitude as Mw 7.15 compared to the observation of Mw 7.6. It must
be noted that this “0.45-magnitude” underestimation is by no means
insignificant, considering the exponential increments in describing
earthquake magnitude (i.e., Mw 7.0 earthquakes will release energy
around 30 times as much as Mw 6.0 earthquakes, and so on so forth)
[29]. To be more specific, the Mw 7.15 earthquake from the empirical
model is actually only 20% as big as the Mw 7.6 earthquake that has
occurred and been measured, from the perspective of energy release
that could reflect earthquake hazards more linearly.

Based on the data of (6.4 Mw, 14 km, 6 mm/yr) from the other case,
although the magnitude estimate of Mw 6.29 from the non-local model
shows a better agreement with the observation of Mw 6.4, the model
still underestimates the observation by 0.11. As a result of that, the
goodness-of-fit evaluation seems to show that the non-local model
could possibly underestimate earthquake magnitude when used in
Taiwan, considering the underestimation was happening in the two
local major earthquakes since 1900.

Fig. 2 shows a graph summarizing the model's goodness-of-fit to the
local data. From the graph, it is clearer to see the non-local model
underestimates the earthquake magnitudes in both events, and there-
fore the model should be better adjusted before a local application.
Specifically, in order to “fix” the issue, a logical and straightforward
approach is to adjust the original intercept (i.e., 5.12) to be greater,
which is one key, logical presumption in the MLE analysis proposed in
the following.

4. Maximum likelihood estimation and applications

4.1. Overviews

The method of moment and maximum likelihood estimation (MLE)
are probably the two most important approaches in statistical estimat-
ing [27]. Unlike the method of moment, MLE aims to estimate the
statistics (e.g., mean value) of a random variable by maximizing the
probability as the given samples that are collected.

We used the following example to further demonstrate this statis-
tical estimation: Let a binomial variable X denote the outcomes of a
project as successful (1) and not successful (0); then given the outcomes
of three projects as 1, 1, and 0, we first understand that the probability
of success, denoted as p, should be equal to 0.67 based on the three
samples.

Then, using MLE procedures to obtain such a statistical inference is
as follows: First, the probability for the given observation (1, 1, 0) to
occur can be expressed as p p p p p× × (1 − ) = × (1 − )2 , which is also
the likelihood function of this MLE. Since p is the unknown, the purpose
of MLE is to find p that can maximize the likelihood function. As a
result, when p equates to 0.67, the equation or probability p p× (1 − )2

can be maximized as 0.15 (=4/27). Therefore, MLE is a statistical
estimation in searching for θ that can maximize the likelihood function

ε θPr( | ), where ε denotes the observation or samples. As mentioned
previously, several MLE-based algorithms have been developed and
used in earthquake engineering, such as the MLE method in calibrating
the b-value of the Gutenberg-Richter relationship [9,11].

4.2. Review of regression analysis

Before applying MLE to this study and making the following
derivations more understandable, we would like to briefly review the
regression analysis that was used to develop the prior, non-local model.
For a regression model, its general formulation can be expressed as
[27]:

Y f X e= ( ) + (2)

where Y and X denote the independent and dependent variables in
regression analysis, and e denotes the model error, which is a random
variable following the normal distribution with mean value=0. (Note
that model error is usually denoted as ε in regression analysis, but in
order to avoid confusion from the observation ε also used in MLE
algorithms, we used e instead of ε herein).

Understandably, from the regression model, Yx, the predicted Y
value given X = x, is equal to f x e( ) + , where f x( ) is a constant as x,
while model error e is a random variable by definition. Therefore, the
mean value (denoted as E) and variance (denoted as V) of Yx can be
derived and expressed as follows [27]:

Fig. 2. Goodness-of-fit between the non-local model and the two local events and the
datasets: Case 1 (Mw 7.6, 90 km, 15 mm/yr) and Case 2 (Mw 6.4, 14 km, 6 mm/yr).
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E Y E f x e E f x E e E f x[ ] = [ ( ) + ] = [ ( )] + [ ] = [ ( )]x (3)

V Y V f x e V e[ ] = [ ( ) + ] = [ ]x (4)

Explicitly, the derivation in Eq. (3) is on the basis that the mean
value of e in a regression model is equal to zero, and Eq. (4) is based on
the theory of probability that the variance of a constant is zero [27].
Note that variance is the square of standard deviation.

As mentioned previously, model error e follows the normal dis-
tribution according to the fundamentals of regression analysis, and
therefore Yx is also a variable following the normal distribution as e
does, just like C=D+1010 in which C and D must follow the same
probability distribution regardless.

Note that although the reviews on regression analysis are on the
basis of a single regression model Y f X e= ( ) + , such basics and
derivations are completely applicable to a multiple regression model
Y f X s e= ( ) +i , like the “Anderson” relationship we used in the study
governed by two independent variables (fault length and slip rate) as
indicators.

4.3. The MLE-based model adjustment

This section would like to elaborate the new MLE algorithm for
adjusting the non-local (empirical) model with (limited) local data,
then using the adjusted model in the local application to assess the
major earthquake probability in Taipei. As mentioned previously, the
intercept should be larger for the study region, since the model
underestimated the two local events (see Fig. 2).

Besides, an additional finding from the goodness-of-fit assessment is
that the model uncertainty might not be as large as 0.26 in association
with the non-local model, considering the “local” standard deviation
should be closer to 0.18 based on the two events with respective model
differences as Mw 0.45 (7.6 vs 7.15) and Mw 0.11 (6.4 vs 6.29). In other
words, to better reflect the situations also observed in the goodness-of-
fit evaluation, the model error of such a correlation around Taiwan
should be adjusted to be lower simultaneously.

On the basis of the two findings from the goodness-of-fit assessment,
the likelihood function of the new MLE algorithm can be expressed as
follows:

ε Case and Case A a σ σPr( : 1 2| = ; = *) (5)

where A and σ denote the intercept and the standard deviation of model
error, and a and σ* are the adjusted parameters subject to the
observations from Case 1 and Case 2. Note that A and σ are both
symbols in the derivation, and a and σ* denote constants.

Next, by substituting a and σ* into Eq. (1), the adjusted model
becomes:

M a L S σ= + 1.16 log( ) − 0.2 log( ) ± *w (6)

Consequently, for Case 1 with L=90 km and S=15 mm/yr, the
mean magnitude is then equal to (a+2.03) from the adjusted model,
with a standard deviation equal to σ* as explained in Section 4.2.

As a result, the probability for the observation of Mw 7.6 to occur
can be expressed as Eq. (7), subject to mean magnitude=(a+2.03) and
standard deviation = σ*:

M μ a σ σPr( = 7.6| = + 2.03; = *)w (7)

Then considering the target variable (Mw) as the dependent variable
of a regression model following the normal distribution (its probability
density function is given in the Appendix A), Eq. (7) can be extended as:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

M μ a σ σ

σ π
a
σ

Pr( = 7.6 | = + 2.03; = *)

= 1
* 2

exp − 1
2

7.6 − ( + 2.03)
*

w
2

(8)

With the function governed by two unknowns a and σ*, Eq. (7) or
Eq. (8) were rewritten as:

M μ a σ σ g a σPr( = 7.6 | = + 2.03; = *) = ( , *)w 1 (9)

Similarly, we can exercise the same derivation for Case 2 with data
as (6.4 Mw, 14 km, S=6 mm/yr), and wrote its likelihood function as
g a σ( , *)2 . Finally, because the two local samples are the observation as a
whole, the likelihood function of this MLE becomes:

ε Case and Case A a σ σ g a σ g a σPr( : 1 2 | = ; = *) = ( , *) × ( , *)1 2

(10)

With the likelihood function developed, the MLE-based model
adjustment is nearly finished. The final step is to solve a and σ* that
can maximize the likelihood function in this MLE calculation.

4.4. The adjusted model

With the two local datasets as (7.6 Mw, 90 km, 15 mm/yr) and (6.4
Mw, 14 km, 6 mm/yr), we solved the governing equation or the
likelihood function in Eq. (10), and returned a as 5.4 and σ* as 0.17
that can maximize the probability from the governing equation.
Therefore, the new adjusted model we proposed for local applications
in Taiwan is:

M L S= 5.4 + 1.16 log( ) − 0.2 log( ) ± 0.17w (11)

It is worth noting that the adjusted model does not conflict with the
presumptions set up at the beginning from the goodness-of-fit assess-
ments; that is, the intercept should be adjusted to be greater (5.4 vs
5.12) while the standard deviation to be lower (0.17 vs 0.26).

Fig. 3 shows the adjusted model and its goodness-of-fit to the same
local data. That is, unlike the original model that underestimates both
local events, the adjusted model is more random with one under-
estimation and one overestimation, which are by 0.17 for Case 1
(underestimation) and −0.17 for Case 2 (overestimation), respectively.

On the basis of the adjusted model, Fig. 4 shows the probability
density for each case in detail. The calculation shows that the
probability density is 1.41 for both cases (although in different sides),
leading to the likelihood function of this MLE equal to 2.0
(=1.41×1.41) with new parameters of a=5.4 and σ*=0.17. It must
be noted that since the earthquake magnitude is a continuous random
variable, the probability density is allowed to be greater than 1.0.

4.5. The application of the adjusted model to the target problem

From the goodness-of-fit assessments showing the non-local model
could probably lead to underestimation when used locally in Taiwan, to
the use of MLE algorithms to adjust the model with limited local data,
the next key task is to apply the adjusted model to the target problem of
this study: the earthquake magnitude that could be possibly induced by
the Sanchiao fault in Taipei. Specifically, with the Sanchiao fault
characterized as 36-km long with 2-mm slip rate per year, the best-

Fig. 3. Goodness-of-fit between the newly-adjusted, MLE model and the same two local
events shown/used in Fig. 2.
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estimate earthquake magnitude or the ideal statistical inference based
on this robust, transparent MLE algorithm was calculated as Mw 7.14,
which is a result of integrating the non-local model with local data in
such a unique manner and calculation.

However, it must be noted that the best estimate (i.e., Mw 7.14)
present in one single value is the so-called deterministic estimate. By
contrast, a probabilistic estimate on the target problem would become
Mw 7.14±0.17 when the model error was also taken into account. By
comparison, the non-local model, developed without considering any
local data, would suggest a deterministic and probabilistic estimate as
Mw 6.87 and Mw 6.87±0.26, respectively, lower than those based on
the adjusted model present herein.

Given the target variable (Mw) in a regression model following the
normal distribution, Fig. 5 shows the earthquake magnitude probability
functions related to the Sanchiao fault. For example, the probabilities
for the fault to induce a major earthquake above Mw 7.0 are 80% and
30% based on the adjusted and original models, respectively. By
contrast, the probabilities for the fault to induce a catastrophic event
like the 1999 Mw 7.6 Chi-Chi earthquake in central Taiwan are 0.37%
(adjusted model) and 0.23% (non-local model). From the estimations,
we can see that the adjusted model suggests a larger earthquake
probability for the target problem than the original model does, which
is reasonable and expectable given the purpose of the MLE analysis is to
address the underestimations that have been happening in the two local
events, as shown in Fig. 2.

5. Discussions

5.1. Earthquake randomness

Understandably, earthquake randomness would appear in magni-
tude, as well as in location, recurrence interval, etc. But it is worth
noting that the scope of this study aims to estimate the earthquake
magnitude in association with the Sanchiao fault based on a MLE-based
algorithm integrating or adjusting a non-local empirical model with
limited local data. In other words, analyzing and calculating when the
event could occur is not the scope of the study, although it is also
relevant to the target problem.

Nevertheless, the new estimate on the magnitude present herein can
be further integrated with the “time uncertainty” regarding the
Sanchiao earthquake. For example, given a best-estimate return period
of the event is around 600 years [23], the probability for it to recur
within the next 50 years should be around 8%, based on the Poisson
model that is commonly accepted for such temporal probability
evaluations [30,31]. As a result, the probability for the Sanchiao
earthquake with magnitude above Mw 7.6 in next 50 years might be
around 0.03%, considering “time uncertainty” and “size uncertainty”
simultaneously.

5.2. Epistemic uncertainty

From the MLE calculation above, another technical question could
be raised as follows: Why not adjust the four model parameters
altogether, but only focusing on the intercept and the standard
deviation of model error? The response to the question is simple: if
the coefficients are adjusted simultaneously, the calculation is then a

Fig. 4. The probability densities for each of the two local events to occur on the basis of
the MLE model.

Fig. 5. Comparison on the probability estimates based on the non-local model and the
adjusted model towards the earthquake magnitude induced by the Sanchiao fault in
Taipei: a) probability density functions, and b) exceedance probability.
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“pure” regression analysis based on the local data only, without any
considerations of the prior information. On the other hand, since the
minimum sample size to perform such a multiple regression is three, the
local regression cannot be developed with the two samples anyway.

However, one may adopt a similar MLE calculation to only adjust
the intercept, on the consideration that the model error should be more
or less the same in different regions. Admittedly, even though we found
the model error for the study region seems smaller based on the
goodness-of-fit assessment, we cannot perfectly prove, and no one can,
such a presumption is less logical/efficient than ours. As a result, this is
the so-called epistemic uncertainty due to our imperfect understandings
of a problem [32] that cannot be perfectly proven at this moment.
Similarly, it is an epistemic uncertainty as we kept the two other
coefficients unchanged in the MLE calculation, considering the “slopes”
between magnitude and length and between magnitude and slip rate
should be similar in different regions. Most importantly, although no
one can perfect address the epistemic uncertainties, we consider the
inferences from this MLE calculation combining the two sources of
information (i.e., global model and limited local data) in such a unique
way should be more logical and reliable than those sorely based on the
prior model without any consideration of local situations/data, with the
support that the newly adjusted model renders a more random
prediction, unlike the prior non-local model that always underestimates
earthquake magnitudes in the two local events.

5.3. Other relevant issues

Although the region around Taiwan is known for high seismicity,
there are only two (local) major events complete with earthquake
magnitude, fault length, and slip rate. Note that it is acknowledged that
several studies did provide their best-estimate magnitudes associated
with other active faults in Taiwan from indirect evidence, but they are
not as reliable as those we used in this study based on direct
instrumentations and measurements. Therefore, for reducing the un-
certainties, the data from direct measurements were only used in this
study, which leads to limited samples available to this study.

On the other hand, what if the local samples are adequate (say 100)
for developing a representative local relationship, what would we do
under the situation? Admittedly, in this situation we have to agree that
this MLE model will become redundant, and using the “100%” local
model developed with local data should be a more logical and

acceptable choice. The reason is that the local data are always more
relevant and reliable than non-local data, which is a theory that is more
acceptable to most of us although it is still debatable owing to our
imperfect understandings, or epistemic uncertainty.

In fact, there are some basic principles to properly integrate prior
information with limited local observation to obtain a new inference
[33,34]. That is, the reason of considering the less reliable non-local
data in a local study is owing to the lack of adequate local data. On the
contrary, when local samples are adequate, adding prior data to the
analysis becomes redundant, even making the estimate more question-
able. Here is a simple analogy to better explain this: If one wants to
study the relationships between heart attack and age among Taiwanese
people, the inference will be most reliable based on (many) local data;
the inference based on non-local data and limited local data will be the
second best, while the one sorely based on non-local data will be least
favorable.

6. Conclusion

Taipei, the most important city in Taiwan, is vulnerable to earth-
quake hazard owing to the unique geological background around the
region. Therefore, the target problem of the study is to evaluate the
major earthquake that could be potentially induced by the Sanchiao
fault in Taipei. On the basis of a non-local empirical model and limited
local samples, this paper presents a novel MLE algorithm aiming to
adjust the non-local model for the local application. Specifically, with
the adjusted model from MLE, the inference is that the magnitude of the
recurring Sanchiao earthquake should be Mw 7.14± 0.17, considering
the fault length of 36 km and slip rate of 2 mm/yr. That is, the inference
based on both the non-local model and local data would suggest a
0.37% probability for the Sanchiao fault in Taipei to induce a
catastrophic event as disastrous as the 1999 Mw 7.6 Chi-Chi earthquake
striking central Taiwan.
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Appendix A. The probability density function of the normal distribution

The following equation is the probability density function of the normal distribution [27]:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥f X x μ σ

σ π
x μ

σ
( = ; , ) = 1

2
exp − 1

2
− 2

(A.1)

where µ and σ are the mean and standard deviation of a random variable X following the normal distribution.

References

[1] Wu YM, Kanamori H. Development of an earth-quake early warning system using
real-time strong motion signals. Sensors 2008;8:1–9.

[2] Wells DL, Coppersmith KJ. New empirical relationships among magnitude, rupture
length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am
1994;84:974–1002.

[3] Anderson JG, Wesnousky SG, Stirling MW. Earthquake size as a function of fault slip
rate. Bull Seismol Soc Am 1996;86:683–90.

[4] Campbell KW, Bozorgnia Y. A ground motion prediction equation for the horizontal
component of cumulative absolute velocity (CAV) based on the PPER-NGA strong
motion database. Earthq Spectra 2010;26:635–50.

[5] Harbindu A, Gupta S, Sharma ML. Earthquake ground motion predictive equations
for Garhwal Himalaya, India. Soil Dyn Earthq Eng 2014;6:135–48.

[6] Lin PS, Lee CT, Cheng CT, Sung CH. Response spectra attenuation relations for
shallow crustal earthquake in Taiwan. Eng Geol 2011;121:150–64.

[7] Wang JP, Kuo-Chen H. On the use of AFOSM to estimate major earthquake

probabilities in Taiwan. Nat Hazards 2015;75(3):2577–87.
[8] Wang JP, Huang D, Cheng CT, Shao KS, Wu YC, Chang CW. Seismic hazard analysis

for Taipei City including deaggregation, design spectra, and time history with Excel
applications. Comput Geosci 2013;52:146–54.

[9] Weichert DH. Estimation of the earthquake recurrence parameters for unequal
observation periods for different magnitudes. Bull Seismol Soc Am
1980;70:1337–46.

[10] Ogata Y. Estimation of the parameters in the modified Omori formula for aftershock
frequencies by the maximum likelihood procedure. J Phys Earth 1983;31:115–24.

[11] Bender B. Maximum likelihood estimation of b values for magnitude grouped data.
Bull Seismol Soc Am 1983;73:831–51.

[12] Kim S, Seo DJ, Riazi H, Shin C. Improving water quality forecasting via data
assimilation–Application of maximum likelihood ensemble filter to HSPF. J Hydrol
2014;519:2797–809.

[13] Kitanidis PK, Lane RW. Maximum likelihood parameter estimation of hydrologic
spatial processes by the Gauss-Newton method. J Hydrol 1985;79(1):53–71.

[14] Hollenbeck KJ, Simunek J, van Genuchten MT. RETMCL: incorporating maximum-
likelihood estimation principles in the RETC soil hydraulic parameter estimation

J.P. Wang et al. Soil Dynamics and Earthquake Engineering 99 (2017) 150–156

155

http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref1
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref1
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref2
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref2
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref2
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref3
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref3
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref4
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref4
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref4
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref5
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref5
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref6
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref6
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref7
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref7
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref8
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref8
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref8
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref9
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref9
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref9
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref10
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref10
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref11
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref11
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref12
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref12
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref12
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref13
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref13
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref14
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref14


code. Comput Geosci 2000;26(3):319–27.
[15] Pollak RD, Palazotto AN. A comparison of maximum likelihood models for fatigue

strength characterization in materials exhibiting a fatigue limit. Probabilist Eng
Mech 2009;24(2):236–41.

[16] Wang JP, Wu YM. A new seismic hazard analysis using FOSM algorithms. Soil Dyn
Earthq Eng 2014;67:251–6.

[17] Wu YM, Kanamori H. Experiment on an onsite early warning method for the Taiwan
early warning system. Bull Seismol Soc Am 2005;95(1):347–53.

[18] Hsiao NC, Wu YM, Zhao L, Chen DY, Huang WT, Kuo KH, Shin TC, Leu PL. A new
prototype system for earthquake early warning in Taiwan. Soil Dyn Earthq Eng
2011;31(2):201–8.

[19] Chen CH, Wang JP, Wu YM, Chan CH, Chang CH. A study of earthquake inter-
occurrence times distribution models in Taiwan. Nat Hazards 2013;69(3):1335–50.

[20] Wang JP, Brant L, Wu YM, Taheri H. Probability-based PGA estimations using the
double-lognormal distribution: including site-specific seismic hazard analysis for
four sites in Taiwan. Soil Dyn Earthq Eng 2012;42:177–83.

[21] Huang SY, Rubin CM, Chen YG, Liu HC. Prehistoric earthquakes along the
Shanchiao fault, Taipei Basin, northern Taiwan. J Asian Earth Sci
2007;31(3):265–76.

[22] Shyu JBH, Sieh K, Chen YG, Liu CS Neotectonic architecture of Taiwan and its
implications for future large earthquakes. J Geophys Res. 110, B08402. 〈http://dx.
doi.org/10.1029/2004JB003251〉.

[23] Cheng CT, Chiou SJ, Lee CT, Tsai YB. Study on probabilistic seismic hazard maps of
Taiwan after Chi-Chi earthquake. J GeoEng 2007;2:19–28.

[24] Sokolov VY, Loh CH, Wen KL. Empirical study of sediment-filled basin response: the
case of Taipei city. Earthq Spectra 2000;16(3):681–707.

[25] Wang JP, Wu MH. Risk assessments on active faults in Taiwan. Bull Eng Geol
Environ 2015;74(1):117–24.

[26] Campbell KW, Thenhaus PC, Barnhard TP, Hampson DB. Seismic hazard model for
loss estimation and risk management in Taiwan. Soil Dyn Earthq Eng
2002;22(9):743–54.

[27] Devore JL. Probability and statistics for engineering and the science. Brooks/Cole:
Cengage Learning; 2012.

[28] Shih R, Chen W, Lin C. A new look for the cause of the Meishan earthquake in
southwestern Taiwan from shallow seismic reflection image. American Geophysical
Union Fall Meeting Abstracts; 1906.

[29] Keller EA. Environmental geology. 7th ed. Upper Saddle River NJ: Prentice Hall;
1996.

[30] Ashtari Jafari M. Statistical prediction for the next great earthquake around Tehran.
J Geodyn 2010;49:14–8.

[31] Wang JP, Huang D, Chang SC, Wu YM. New evidence and perspective to the Poisson
process and earthquake temporal distribution from 55,000 events around Taiwan
since 1900. Nat Hazards Rev ASCE 2014;15(1):38–47.

[32] Ang AHS, Tang WH. Probability concepts in engineering: emphasis on applications
to civil and environmental engineering. NJ: John Wiley & Sons, Inc; 2007.

[33] Wang JP, Xu Y. Estimating the standard deviation of soil properties with limited
samples through the Bayesian approach. Bull Eng Geol Environ 2015;74(1):271–8.

[34] Hapke C, Plant N. Predicting coastal cliff erosion using a Bayesian probabilistic
model. Mar Geol 2010;278(1):140–9.

[35] Wang JP, Chang SC, Wu YM, Xu Y. Bayesian analysis on earthquake magnitude
related to an active fault in Taiwan. Soil Dyn Earthq Eng 2015;75:18–26.

J.P. Wang et al. Soil Dynamics and Earthquake Engineering 99 (2017) 150–156

156

http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref14
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref15
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref15
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref15
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref16
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref16
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref17
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref17
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref18
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref18
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref18
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref19
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref19
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref20
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref20
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref20
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref21
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref21
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref21
http://dx.doi.org//10.1029/2004JB003251
http://dx.doi.org//10.1029/2004JB003251
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref22
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref22
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref23
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref23
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref24
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref24
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref25
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref25
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref25
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref26
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref26
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref27
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref27
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref28
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref28
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref29
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref29
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref29
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref30
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref30
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref31
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref31
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref32
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref32
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref33
http://refhub.elsevier.com/S0267-7261(17)30447-5/sbref33

	Earthquake probability in Taipei based on non-local model with limited local observation: Maximum likelihood estimation
	Introduction
	The Sanchiao fault in Taipei
	Empirical relationship between earthquake magnitude, fault length, and slip rate
	Maximum likelihood estimation and applications
	Overviews
	Review of regression analysis
	The MLE-based model adjustment
	The adjusted model
	The application of the adjusted model to the target problem

	Discussions
	Earthquake randomness
	Epistemic uncertainty
	Other relevant issues

	Conclusion
	Acknowledgements
	The probability density function of the normal distribution
	References




