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Abstract It has been reported that earthquake b-values decrease linearly with the differential stresses in
the continental crust and subduction zones. Here we report a regression-derived relation between
earthquake b-values and crustal stresses using the Anderson fault parameter (Aϕ) in a young orogenic belt of
Taiwan. This regression relation is well established by using a large and complete earthquake catalog for
Taiwan. The data set consists of b-values and Aϕ values derived from relocated earthquakes and focal
mechanisms, respectively. Our results show that b-values decrease linearly with the Aϕ values at crustal
depths with a high correlation coefficient of �0.9. Thus, b-values could be used as stress indicators for
orogenic belts. However, the state of stress is relatively well correlated with the surface geological setting
with respect to earthquake b-values in Taiwan. Temporal variations in the b-value could constitute one of the
main reasons for the spatial heterogeneity of b-values. We therefore suggest that b-values could be highly
sensitive to temporal stress variations.

1. Introduction

The earthquake size distribution in the Earth’s crust commonly follows the Gutenberg-Richter power law
(Gutenberg & Richter, 1944): log10N = a � bM, where a is the total number of earthquakes, b is the relative
earthquake size distribution, and N is the number of earthquakes with a magnitude equal to or greater
than M. Here the b-value governs the slope of the power law, and it is used to describe the frequency
of the earthquake size distribution. In other words, a high b-value means a predominance of small earth-
quakes; conversely, a low b-value means that large earthquakes dominate over smaller earthquakes. The
variations in b-values both spatially and temporally are generally regarded as clues for large earthquake
precursors (e.g., Smith, 1981). The spatial variations in the b-value have been reported to vary with differ-
ent stress regimes worldwide, particularly in California of the USA, Japan (Schorlemmer et al., 2005), and
Italy (Gulia & Wiemer, 2010). These studies indicate that normal and thrust faulting regions have higher
and lower b-values, respectively, while strike-slip faulting regions have intermediate b-values. This phe-
nomenon may imply that the b-value acts as a stress meter depending inversely on the differential stress
(Schorlemmer et al., 2005). This hypothesis has been supported by laboratory rock fracture experiments
showing that the b-values of acoustic emission events decrease linearly with an increase in the differential
stress (σ1 � σ3) (Amitrano, 2003; Goebel et al., 2013; Scholz, 1968). It has also been verified that earthquake
b-values decrease inversely with the differential stress in the continental crust (Scholz, 2015). For subduc-
tion zones, Scholz (2015) also reported a negative linear relation between the b-value and differential
stress. The relationship between the b-value and stress could be very important if it could be well estab-
lished regionally. Thus, b-values could be effective in monitoring spatiotemporal stress variations in the
crust. However, the establishment of the abovementioned relationship strongly depends on comparable
stress measurements for b-value determinations.

The island of Taiwan constitutes a young orogenic belt that initiated at 3–5 Ma (Teng, 1990) when the
Philippine Sea Plate began colliding with the Eurasian Plate with a convergence rate of ~82 mm/yr at an azi-
muth of ~310° (Yu et al., 1997) (Figure 1). This plate convergence has created six major geological provinces
on this island. In Figure 1, the Longitudinal Valley (LV) in the southeast represents the suture zone between
the Eurasian and Philippine Sea Plates. The eastern side of the LV consists of the Coastal Range (CoR). The
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western side of the LV can be classified into four geological belts from west to east: the Coastal Plain, the
Western Foothills (WF), the Hsueshan Range (HR), and the Central Range (CeR). Additionally, the rapid
convergence rate has resulted in strong earthquake activities in this young orogenic belt (Figure 1). These
earthquakes are being recorded by a dense seismic network known as the Central Weather Bureau Seismic
Network (CWBSN) (Figure 1), which is the agency responsible for earthquake monitoring in Taiwan. A large
data set of P and S wave arrivals, first motion polarities, and S-P times from the Taiwan Strong-Motion
Instrumentation Program (Figure 1) are combined with the data set from the CWBSN. This overall data set
provides a large and relatively complete earthquake relocation catalog (Wu, Chang, et al., 2008) as well as
a first-motion focal mechanism catalog (Wu, Zhao, et al., 2008) for further seismological research. For exam-
ple, focal mechanism catalogs are effective for determining the principal stress tensors of the crust (Hsu et al.,
2009; Wu et al., 2010). A stress tensor field together with styles of faulting in the region of Taiwan is recently
reported by Chen et al. (2017), showing an improved spatial resolution of the state of stress and the stress

Figure 1. Tectonic settings, seismic networks, and seismicity in the Taiwan region. The white arrow indicates the rate of
plate convergence between the Eurasian and Philippine Sea Plates. Major geological provinces on Taiwan Island are
marked by black curves and are labeled from A to G. The two seismic networks are colored using different triangles.
CWBSN: Central Weather Bureau Seismic Network; TSMIP: Taiwan Strong Motion Instrumentation Program. The colored
dots show the relocated hypocenters from 1994 to 2011 based on Wu, Chang, et al. (2008). The sizes are proportional to
the magnitude.
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Figure 2. Map view of earthquake b-values and Anderson fault parameters (Aϕ) in the Taiwan region. The hollow grid
nodes denote regimes with insufficient data for a stress tensor inversion (Chen et al., 2017).
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regime in the crust. The data set provides a good opportunity to verify
the relationship between the b-value and crustal stresses in a young
orogenic belt.

2. Stress and b-Values in the Taiwan Orogenic Belt

Chen et al. (2017) inverted the crustal stress tensors in Taiwan region
from a total of 7,939 focal mechanisms from 1991 to 2015, by employing
the spatial and temporal stress inversion algorithm (Hardebeck &
Michael, 2006). From the results of spatial and temporal stress inversion,
the stress rations (R) derived from directions and magnitudes of three
principal stress axes in the grid cell size of 0.1° × 0.1° × 10 km are used to
estimate the corresponding Anderson fault parameter (Aϕ) (Chen et al.,
2017). Aϕ value is used to describe stress regimes (e.g., Hardebeck &
Hauksson, 2001) as defined by Simpson (1997) in the following:
Aϕ = (n + 0.5) + (�1)n × (R � 0.5), where R is the stress ratio
[R = (σ1 � σ2)/(σ1 � σ3)] and n is the constant determined from the rake
angles such that n = 0, 1, and 2 for normal, strike slip, and thrust type,
respectively. The rake angles (λ) from double-coupled focal mechanisms
are classified into the three types according to a given range of ±40°
from pure events, that is, λ = �90° as normal, λ = 0°, and ±180° as strike
slip and λ = 90° as thrust events. Each rake angle in the given grid cell is
determined by a moment tensor summation technique (Kostrov, 1974)
from focal mechanisms within the grid cell or within an area twice the
grid cell for grid nodes where focal mechanism is less than 10 events.

Since the Aϕ value includes parameters of the differential stress and rake angles, it is a suitable index for
constraining the relationship between stresses and earthquake b-values in Taiwan. We note that the one
standard deviation for stress ratios and rake angles from Chen et al. (2017) are approximately 0.22 and 20°,
respectively. The Aϕ value ranges from 0 to 1, from 1 to 2, and from 2 to 3 for normal, strike slip, and thrust
faulting regimes, respectively.

In this study, we used a relocated earthquake catalog (Wu, Chang, et al., 2008) from 1994 to 2011 to esti-
mate the b-values in the region of Taiwan. This data period was selected because the CWBSN was oper-
ated in a triggered-recording mode before 1994, and the operation system was upgraded after 2011.
The relocated catalog includes 369,952 events in the Taiwan region from 1994 to 2011 (Figure 1). The mag-
nitudes range from ML 0.6 to 7.3. The depth range is between 0.5 and 275 km, and most of the events are
shallower than 40 km. To accurately estimate the b-values from background seismicity, temporal and spa-
tial double-link cluster analyses (e.g., Wu & Chiao, 2006; Wu, Chen, et al., 2008) were used to remove the
aftershocks from the data set. We removed the aftershock sequences for main shocks with ML > 4.0 with
linking parameters of 3 days and 5 km. To evaluate the reliability of the catalog, we calculated the spatial
distribution of the magnitude completeness (MC) by using the maximum curvature approach (Wiemer &
Wyss, 2000). We used a maximum-likelihood method (Aki, 1965) to determine the b-values with the same
grid cell size as Aϕ (Chen et al., 2017), that is, horizontal and vertical grid cells of 0.1° and 10 km, respec-
tively, at depths between 0 and 40 km. We required at least 50 events with magnitudes larger than MC for
a b-value determination.

The b-values and Aϕ values in the Taiwan region are shown individually in Figure 2 above a depth of
20 km, which is the depth extent in the crust with the most solutions of Aϕ values (Chen et al., 2017).
We found that the lowest b-values are located in the southern WF and in the CoR, and they correlate with
the highest Aϕ values as in a thrust faulting regime. In contrast, the highest b-values are founded
in the northern CeR corresponding to the lowest Aϕ values as in a normal faulting regime. Additionally,
the b-values are intermediate in the southern HR and CeR, and they partially correlate with intermediate
Aϕ values as in a strike-slip faulting regime. These observations are consistent with the phenomenon that
b-values decrease linearly with the stress regime from normal to strike slip to thrust faulting regimes (Gulia
& Wiemer, 2010; Schorlemmer et al., 2005).
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Figure 3. Negative linear relationship between earthquake b-values and
Anderson fault parameters (Aϕ) in the Taiwan region. The small white and
large black circles represent the raw and grouped data, respectively. The
horizontal and vertical bars across each black circle denote one standard
deviation of the Aϕ and b-values, respectively. The solid and dashed lines
show the best fitting solutions and their one standard deviation, respectively.
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To find a relationship between the Aϕ and b-values for the Taiwan orogenic belt, we used a least squares
linear regression approach to search for a best fitting line for the two data sets. Due to the scattering in
the raw data (Figure 3), we grouped the data in an Aϕ value interval of 0.25 and calculated the mean
values to search for the best fitting line associated with those values. In Figure 3, we can observe a clear
negative linear relationship between the Aϕ and b-values based on the mean values as follows:
b = � 0.073Aϕ + 1.166. The correlation coefficient is �0.905. The grouped data in this negative linear
fitting display relatively stable results, with a minimum one standard deviation of 0.03.

3. Discussion and Conclusions

Earthquake b-values have been found to decrease linearly with crustal stresses in the continental crust
globally (Scholz, 1968, 2015). However, in this study, this linear relationship is reported for the first time
for a young orogenic belt using a large and relatively complete data set from Taiwan. A better correlation
coefficient of �0.91 was achieved in this study compared with that of �0.77 determined from a study of
the global continental crust (Scholz, 2015). This difference in the correlation coefficient may result from the
difference in the tectonic setting. The data set generated by Scholz (2015) for the continental crust
included several different tectonic regions. If they were estimated individually, each data set could have
own linear relationship with each better correlation coefficient. It implies the existence of different nega-
tive linear relationships between the b-values and crustal stresses in different tectonic settings. In Figure 1
of Scholz (2015), the data in the Japan region followed a lower slope of negative linear relationship that
consistently differed from those in other regions upon closer inspection. The lower slope with high corre-
lation coefficient is consistent with our result which b-values decrease inversely with Aϕ values in a lower
slope (Figure 3). Japan is a tectonic region mainly characterized by thrust to strike-slip faulting (Wesnousky
et al., 1982), which is similar to the Aϕ values as presented in Taiwan region (Figure 3). This verified that
the negative linear relationship estimated from our study is reliable, and it is much more robust based on
the completeness of regional data set.

Although a better correlation coefficient is obtained in this study, our large data set shows a scattering of 0.7
in the b-values with the Aϕ values (Figure 3), which is higher than the simple data sets combined by Scholz
(2015) at about a scattering of 0.3 in the b-values. The variations in b-values both in space and time, which has
been reported from analysis of the earlier data set in Taiwan (Chan et al., 2012; Wu & Chiao, 2006; Wu, Chen,
et al., 2008), could be one of the reasons causing that scattering. The temporal variations of b-values
were estimated to be a scattering of 0.3 in long-term average from Figure 4 of Wu and Chiao (2006) and
Figure 3 of Wu, Chen, et al. (2008). Note that the temporal variations show episodic, larger scattering of 0.5
in b-values in that two figures. Chan et al. (2012) investigated the spatial and temporal variations in b-values
before 23 ML ≥ 6.0 earthquakes in the Taiwan region, suggesting that the spatial variation of b-values is prior
to the earthquakes, which means lower b-values occurring predominately in/around the epicenters of
impending earthquakes. The previous observations, highlighting a spatiotemporal variation of earthquake
b-values in the crust, may explain a scattering of 0.7 in the b-values with the Aϕ values from a longer obser-
vation in this study.

In addition, our results show that the earthquake b-values in Taiwan do not correlate well with the surface
geological setting with respect to the Aϕ values. Based on the inferred stress regimes of Taiwan (Chen
et al., 2017) above the depths of 20 km (Figure 2), the Coastal Plain, WF, and HR are dominated by thrust
faulting, and the CoR and CeR are dominated by normal and a mixture of thrust and strike-slip faulting,
respectively. However, earthquake b-values in Taiwan show spatial heterogeneity regionally and do not
coherently follow the spatial distribution of surface geological settings (Figure 2). The spatial heterogeneity
in b-values could directly reveal variations of differential stress in the crust, since we have found that loca-
tions of the highest and lowest b-values corresponding to the lowest and highest Aϕ values, respectively,
are highly overlapped. These observations, coupled with the previous result of spatiotemporal variation in
b-values (Chan et al., 2012), may imply that earthquake b-values are more sensitive to detect the variations
in confining/pore pressure in the crust than differential stresses (Aϕ values) do. We therefore suggest that
b-values could be highly sensitive to temporal stress variations. Nevertheless, the features can only reflect
that crustal stress is relatively stable in the space and time with respect to earthquake b-values in Taiwan
region. Note that the occurrence of a large earthquake, such as the 1999 Mw 7.6 Chi-Chi earthquake, could
also cause significant changes in the stress regime at Taiwan (Wu et al., 2010).
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The relationship between earthquake b-values and crustal stress is established for the first time in a young
orogenic belt in this study. We find that spatial b-values decrease inversely with the Aϕ values in the crust.
High and low b-value regions correlate with normal and thrust faulting regimes, respectively, and intermedi-
ate b-values partially correlate with strike-slip faulting regimes. The negative linear relationship between crus-
tal stresses and b-values has a high correlation coefficient of �0.9. This relationship will be helpful for
monitoring variation in the state of stress in the Taiwan region and other young orogenic belts when stress
measurements in the crust are lacking.
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