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A B S T R A C T

This paper presents a new copula-based earthquake early warning (EEW) decision-making strategy, aiming to
characterize missed-alarm and false-alarm probabilities for an on-site EEW and determine an optimum threshold
at which EEW should be set off with the lowest missed-alarm and false-alarm probabilities combined. On the
basis of an existing PD3-PGV (PD3: peak ground displacement within the first three seconds after P-wave arrives;
PGV: peak ground velocity) on-site EEW, the analysis shows that a copula model consisting of the Lognormal
distribution, Weibull distribution, and Frank copula can satisfactorily model the PD3-PGV joint probability
distribution. Accordingly, the optimum PD3 triggering thresholds for different PGV warning thresholds from 5 to
35 cm/s are presented for future references in the use of the PD3-PGV on-site EEW with maximum reliability.

1. Introduction

From recent events, it is a fact that we cannot predict earthquakes
for effective hazard mitigation. The main reason for not being able to
predict earthquakes is that we cannot monitor the stress and strain
conditions of rock a few kilometers below the ground surface where the
focal points are located [1]. As a result, several methods were devel-
oped for seismic hazard mitigation, such as seismic hazard assessment
based on geological and seismological data. For example, Wang et al.
[2] conducted a probabilistic seismic hazard analysis (PSHA) for Taipei
city, estimating the levels of PGA (peak ground acceleration) that the
sites could encounter considering different periods of time. Other PSHA
case studies include those by Ayele [3], Silacheva et al. [4], and Na-
kajima et al. [5], all aiming to best estimate earthquake-induced PGA
(or SA: spectral acceleration) in different return periods for preparing a
corresponding earthquake-resistant design for the target sites.

Unlike seismic hazard analysis that develops site-specific earth-
quake-resistant designs considering earthquake uncertainties, earth-
quake early warning (EEW) aims to detect and interpret an occurring
earthquake as early as possible, then disseminate warning messages to
the public before the arrival of peak earthquake motions (mainly uti-
lizing the nature that radio waves can travel much faster than seismic
waves). Nowadays, EEW has been implemented in several regions
around the world, including Taiwan, Japan, California, Mexico,
Romania and Turkey [6–19]. Understandably, EEW aims to send out

warning messages tens of seconds before the arrival of peak ground
shaking. Within the lead time, immediate actions can be taken for ha-
zard mitigation, including shutting down the operation of critical fa-
cilities (e.g., nuclear power plants), decelerating high-speed trains, etc.
Generally speaking, there are two types of EEW, referred to as regional
and on-site systems. The former is to interpret data that have been
detected by multiple seismic stations close to the earthquake, then
sending out warning messages to farther sites. By contrast, an on-site
system is based on the less strong ground motions that have been de-
tected at a site, from which the magnitude of peak shaking (arriving
later at the same site) can be estimated with an empirical relationship;
and as the estimated peak shaking is strong, on-site EEW will be set off
[16–19].

As a result, the essential of an on-site EEW is the relationship be-
tween early motions and peak motions (the larger the early motions,
the larger the peak motions). For instance, Wu and Kanamori [18]
collected 780 strong-motion data from Taiwan, Japan, and Southern
California, and discovered a moderate correlation between peak ground
displacement within the first three seconds after P-wave arrives (PD3)
and peak ground velocity (PGV), which has become the backbone of the
on-site EEW system implemented in Taiwan [19].

Like warning systems for landslides, debris flows, etc., missed and
false alarms in EEW are inevitable due to imperfect prediction models.
Therefore, in addition to EEW methodology, many studies on EEW re-
liability have also been reported. For instance, Iervolino et al. [20]
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considered ground motion prediction equations play a more critical role
in regional EEW than the models for determining the real-time forecasts
of earthquake magnitude and location. Wang et al. [16] proposed that
using multiple precursors should be able to improve EEW reliability,
based on a case study using the PEER (Pacific Earthquake Engineering
Research Center) ground motion database. Note that such a suggestion
is in agreement with Böse et al. [21] who found the frequency of false
alarms can be substantially reduced with multiple precursors added to
the equation. Other studies concerning EEW reliability include the
adoption of risk-based and performance-based decision-making for
EEW [22,23], selection of a proper empirical model as the core in EEW
computation [24], and reliability evaluation for the on-site EEW im-
plemented in Taiwan [19].

In this paper, a new application of the copula approach to estimate
the probabilities of missed alarm and false alarm for an on-site EEW was
presented. On the basis of an existing PD3-PGV on-site EEW, we found
that a copula model consisting of the Lognormal distribution, Weibull
distribution, and Frank copula can satisfactorily model the PD3-PGV
joint probability distribution. More importantly, based on the joint
distribution model for PD3 and PGV, the probability of missed alarm
(the probability of PD3 less than a triggering threshold while PGV
greater than a warning threshold) and the probability of false alarm
(the probability of PD3 greater than a triggering threshold while PGV
less than a warning threshold) were estimated. Finally, the optimum
PD3 triggering thresholds for different PGV warning thresholds were
presented for future references in the use of the PD3-PGV on-site EEW
with maximum reliability.

2. The copula approach

2.1. Methodology

The copula approach is to develop a joint probability distribution
for a given multivariate dataset, i.e., to calibrate a joint distribution
function based on the best-fit marginal distributions for each variable,
and the best-fit copula function for modeling the dependence structure
between variables. As a result, the calibration process is referred to as a
de-coupled calibration, which can be conducted more easily than the
direct calibration on a multivariate model (e.g., a multivariate Normal
distribution). Since the copula approach can provide a number of joint
distribution models with different combinations of marginal distribu-
tions and copula functions, the chance of capturing the trend of a
multivariate dataset can be significantly increased [25].

To further illustrate the copula approach, a bivariate example is
presented in the following. Given both X and Y follow the Uniform
distribution from a to b (a and b are constants; a< b), their marginal
cumulative distribution functions (CDFs), FX(x) and FY(y), can be re-
spectively expressed as:

= ≤ = −
−

F x X x x a
b a

( ) Pr( )X (1)

and

= ≤ = −
−

F y Y y y a
b a

( ) Pr( )Y (2)

Then considering their dependence structure can be modeled by the
Clayton copula, its copula function, C(uX, uY; θ), is given by [25]:

= + − = + −− − − − − −C u u θ u u F x F y( , ; ) { 1} {[ ( )] [ ( )] 1}X Y X
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Y
θ θ

X
θ

Y
θ θ1/ 1/

(3)

where θ is the copula parameter for the Clayton copula; uX = FX(x) and
uY = FY(y) are the marginal CDFs for X and Y, respectively. Note that
for a copula C(uX, uY; θ), its parameter θ can be determined from the
Kendall rank correlation coefficient, τ, between X and Y using the fol-
lowing relationship [26]:

∫ ∫= −τ C u u θ C u u θ4 ( , ; )d ( , ; ) 1X Y X Y0

1

0

1

(4)

With the three sub-models calibrated, the joint CDF for X and Y, FX,
Y(x, y), can be developed by substituting Eq. (1) and Eq. (2) into Eq. (3):
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2.2. Applications

The copula approach has been increasingly utilized in different
probabilistic studies, including slope stability assessment [27–30],
flood frequency evaluation [31], traffic data analysis [32], financial
engineering [33], as well as earthquake engineering and applied seis-
mology [34–41]. For instance, in order to develop the joint distribution
model for a structure's peak and residual displacements under earth-
quake condition, Goda [34] developed a copula model consisting of the
Frechet distribution, generalized Pareto distribution, and asymmetrical
Gumbel copula that can satisfactorily model the target joint probability.
Goda and Tesfamariam [35] proposed a model consisting of two Fre-
chet distributions, one generalized Pareto distribution, one asymme-
trical Gumbel copula, and one Gaussian copula for capturing the joint
distribution of the three variables: namely maximum inter-story drift
ratio, residual inter-story drift ratio, and peak floor acceleration. Xu
et al. [38] discovered a model consisting of two Lognormal distributions
and one Gaussian copula can satisfactorily capture the joint distribution
function for PGA (peak ground acceleration) and CAV (cumulative ac-
celeration velocity), two very important ground motion intensity
measures in earthquake engineering.

3. PD3-PGV data and joint distribution

As mentioned previously, Wu and Kanamori [18] collected 780
pairs of PD3 and PGV data for on-site EEW development. As shown in
Fig. 1, such an early precursor (PD3) and peak motion (PGV) has a
Kendall rank correlation coefficient of τ=0.70. It is clear that the two
variables’ joint probability function cannot be delineated directly from
Fig. 1. As a result, we reprocessed the data and plotted their observed
joint histogram as Fig. 2, which will be modeled with the copula ap-
proach.

3.1. Calibration of marginal distributions

The first step of the model development is to calibrate the marginal
CDFs for PD3 and PGV individually. Four common univariate

Fig. 1. Scatter plot of the 780 paired PD3-PGV observations [18].

J.P. Wang et al. Soil Dynamics and Earthquake Engineering 115 (2018) 324–330

325



distributions were selected, namely the Normal distribution truncated
below zero (referred to as TruncNomal), Gumbel distribution truncated
below zero (referred to as TruncGumbel), Lognormal distribution and
Weibull distribution. Note that all the four distributions are defined on
positive real numbers, thus satisfying the requirements of positive va-
lues for both PD3 and PGV. In this study, Akaike Information Criterion
(AIC) [26] is adopted to identify the best-fit marginal distribution. The
formula of AIC for identifying the best-fit marginal distribution is
shown in Appendix. It is clear that AIC is related to the log-likelihood
for a specified distribution and the number of unknown parameters to
be calibrated in this distribution. Therefore, AIC favors a distribution
that has the maximum log-likelihood and minimum number of un-
known parameters. That is, a distribution producing the lowest AIC
value among the set of candidate distributions is considered as the best-
fit distribution.

Table 1 summarizes the AIC values for the four distributions. Based
on the data for PD3 in Fig. 1, the AIC values for the TruncNormal,
TruncGumbel, Lognormal and Weibull distributions are calculated as
560, −128, −1062 and −974, respectively. It is clear that the Log-
normal distribution with the lowest AIC value of −1062 is the best-fit
distribution for PD3. Similarly, with the data for PGV in Fig. 1, the AIC
values are obtained as 6190, 5648, 5142 and 5058 for the Trunc-
Normal, TruncGumbel, Lognormal and Weibull distributions, respec-
tively. Therefore, the Weibull distribution with the lowest AIC value of
5058 is the best-fit distribution for PGV. To verify the goodness-of-fit of
the identified best-fit distributions, Figs. 3 and 4 show the observations
(sample size N=780) along with the four model predictions for PD3

and PGV, respectively. From the plots, it can also be seen that the
Lognormal distribution provides the best fit to the PD3 observations,
whereas the Weibull distribution is the best-fit distribution to model the
PGV observations.

3.2. Calibration of dependence structure with copula

Next, we calibrated the dependence structure between PD3 and
PGV. Like the marginal CDF calibration, six commonly used copulas
were selected, namely the Gaussian copula, Plackett copula, Frank co-
pula, Clayton copula, Gumbel copula and Independent copula. The
copula functions for the six copulas are summarized in Table 2. Ac-
cording to Xu et al. [38], this group of copulas provides adequate di-
versity that should be able to model a given bivariate dataset. Similarly,
AIC is used in this study to identify the best-fit copula. The formula of
AIC for identifying the best-fit copula is also shown in Appendix. It can
be seen that AIC is related to the log-likelihood for a specified copula
and the number of unknown copula parameters to be calibrated in this
copula. As a result, AIC favors a copula that has the maximum log-
likelihood and minimum number of unknown copula parameters. That
is, a copula with the lowest AIC value among the set of candidate co-
pulas is taken as the best-fit copula. Based on the data in Fig. 1, the AIC
values for the Gaussian, Plackett, Frank, Clayton, Gumbel and In-
dependent copulas are obtained as −1020, −1044, −1127, −465,
−888 and 2, respectively. It is clear that the Frank copula with the
lowest AIC value of −1127 is the best-fit copula for describing the
dependence structure between PD3 and PGV.

3.3. Joint distribution model for PD3 and PGV

Given the marginal distributions for PD3 and PGV are respectively
calibrated as the Lognormal distribution and the Weibull distribution,
and the dependence structure between PD3 and PGV is calibrated as the
Frank copula, the joint CDF for PD3 and PGV, F PD PGV( *, *)PD PGV, 33 , can

Fig. 2. The observed and predicted joint histogram for PD3 and PGV.

Table 1
Summary of the calibration for the best-fit marginal distributions.

Marginal distribution AIC value

PD3 PGV

TruncNormal 560 6190
TruncGumbel −128 5648
Lognormal −1062 (best-fit) 5142
Weibull −974 5058 (best-fit)

Fig. 3. Marginal distribution for PD3: observation and four model predictions.

Fig. 4. Marginal distribution for PGV: observation and four model predictions.

J.P. Wang et al. Soil Dynamics and Earthquake Engineering 115 (2018) 324–330

326



be expressed as Eq. (6) by substituting the two marginal distributions
into the Frank copula:

= ≤ ≤

= − ⎡
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+ − −
−
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− −

−

F PD PGV Pr PD PD PGV PGV

θ
ln e e

e

AND( *, *) ( * *)

1 1 ( 1)( 1)
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θu θu

θ

, 3 3 3

PD PGV

3

3

(6)

where θ is the copula parameter for the Frank copula, and is estimated
as 11.48 by solving Eq. (4) using τ=0.70; PD*3 and PGV* are the ar-
guments for PD3 and PGV, respectively; uPD3 and uPGV are the marginal
CDFs for PD3 and PGV, respectively. For PD3 following the Lognormal
distribution, uPD3 is as follows:

⎜ ⎟= = ≤ = ⎛
⎝

− ⎞
⎠

u F
p

q
(PD*) Pr(PD PD*) Φ

ln(PD*)
PD PD 3 3 3

3 1

1
3 3

(7)

where Φ denotes the CDF of the standard Normal distribution; p1 and q1
are the two distribution parameters governing the marginal CDF for
PD3. Based on the mean and standard deviation of PD3, p1 and q1 are
respectively estimated as −2.37 and 1.34 using the method of mo-
ments. For PGV following the Weibull distribution, uPGV is:

⎜ ⎟= = ≤ = − ⎡

⎣
⎢−⎛

⎝
⎞
⎠

⎤

⎦
⎥u F

p
(PGV*) Pr(PGV PGV*) 1 exp PGV* q

PGV PGV
2

2

(8)

where p2 and q2 are the two distribution parameters governing the
marginal CDF for PGV. Specifically, p2 and q2 are the so-called scale and
shape parameters for the Weibull distribution. Based on the mean and
standard deviation of PGV, p2 and q2 are respectively estimated as 7.26
and 0.62 using the method of moments.

Fig. 2 also shows the predicted joint histogram by the joint dis-
tribution model for PD3 and PGV in Eq. (6). Note that the predicted
joint histogram is produced using 780 pairs of simulated PD3 and PGV
data from the fitted joint distribution model. The choice of a sample size
of N=780 for the simulated data is to facilitate comparison with the
observed joint histogram which is also produced using 780 pairs of
observed PD3 and PGV data. It can be seen from Fig. 2 that the pre-
dicted joint histogram is in good agreement with the observed joint
histogram, indicating that the fitted joint distribution model for PD3

and PGV in Eq. (6) can satisfactorily model the given PD3-PGV bivariate
dataset.

4. Model application to on-site EEW reliability assessment

4.1. Missed-alarm and false-alarm probabilities

As mentioned previously, missed alarm and false alarm in EEW are
inevitable owing to natural randomness. For the PD3-PGV on-site EEW,
missed alarm refers to the situation when the actual PGV is greater than
a pre-determined warning threshold, WTPGV, while EEW is not set off
(i.e., the detected PD3 is less than a pre-determined triggering
threshold, TTPD3). On the other hand, false alarm refers to the situation
when the actual PGV is less than WTPGV, while EEW is set off (i.e., the

detected PD3 is greater than TTPD3). Therefore, the probability of missed
alarm is the probability of PD3 less than TTPD3 while PGV greater than
WTPGV, whereas the probability of false alarm is the probability of PD3

greater than TTPD3 while PGV less than WTPGV. Mathematically, the
probabilities of missed alarm and false alarm can be respectively ex-
pressed as:

= ≤ >Pr Missed alarm Pr PD TT PGV WTAND( ) ( )DD PGV3 3 (9)

and

= > ≤Pr False alarm Pr PD TT PGV WTAND( ) ( )PD PGV3 3 (10)

According to probability theory, Eqs. (9) and (10) can be respec-
tively rewritten as:

= −( ) ( )Pr Missed alarm F TT F TT WT( ) ,PD PD PD PGV PD PGV,3 3 3 3 (11)

and

= − ( )Pr False alarm F WT F TT WT( ) ( ) ,PGV PGV PD GV PD PGV,PGV3 3 (12)

It is clear that the probabilities of missed alarm and false alarm are
functions of TTPD3 and WTPGV. Therefore, given TTPD3 and WTPGV, the
probabilities of missed alarm and false alarm can be readily obtained by
using Eqs. (11) and (12) based on the calibrated marginal and joint
CDFs for PD3 and PGV. For instance, given TTPD3 =1 cm and WTPGV

=10 cm/s, the PD3-PGV on-site EEW should have a missed-alarm
probability of 25.85% and a false-alarm probability of 0.16%. The
surface plots of the probabilities of missed alarm and false alarm are
shown in Figs. 5 and 6, respectively. It can be seen that the increase of
TTPD3 or decrease of WTPGV increases the probability of missed alarm

Table 2
Summary of the calibration for the best-fit copula.

Copula Functional form, C(uX, uY; θ) AIC value

Independent u uX Y 2
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Fig. 5. Surface plot of probability of missed alarm against TTPD3 and WTPGV.
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but decreases the probability of false alarm.

4.2. Method for determining optimum triggering threshold

For the PD3-PGV on-site EEW, WTPGV is generally pre-determined
by engineers based on the characteristics of a structure, such as design
resistance, the consequence of structural failure, etc. That is, if a
structure is designed and constructed with high capacity against PGV, a
large value of WTPGV is adopted; otherwise a lower one is used. Then,
TTPD3 is determined using a PD3-PGV empirical equation based on
WTPGV. Note that this method for determining TTPD3 ignores the un-
certainties in the PD3-PGV regression model. In this study, a feasible
and more objective method for determining TTPD3 based on WTPGV is
proposed, which involves an optimization of the probability of missed
+ false alarm with respect to TTPD3. The optimum TTPD3 is the one that
minimizes the probability of missed + false alarm, or equivalently
maximizes the reliability for the PD3-PGV on-site EEW.

Fig. 7 shows the surface plot of the probability of missed + false
alarm. Like the probabilities of missed alarm and false alarm, the
probability of missed + false alarm is also a function of TTPD3 and

WTPGV. However, for a given or fixed WTPGV, the probabilities of missed
alarm, false alarm, and missed + false alarm are all a function of TTPD3

only. Under this condition, the probabilities of missed alarm, false
alarm, and missed + false alarm are reduced from a surface to a curve.
As an example, Fig. 8 shows the curves for the probabilities of missed
alarm, false alarm, and missed + false alarm when WTPGV =10 cm/s.
It can be seen that the probability of missed alarm increases with in-
creasing TTPD3, whereas the probability of false alarm decreases with
increasing TTPD3. On the other hand, the probability of missed + false
alarm firstly decreases, and then increases when TTPD3 ranges from 0 to
1 cm. As a result, an optimum TTPD3 of 0.19 cm is obtained from the
optimization, which produces the minimum probability of missed
+ false alarm of 11.78%, or the maximum reliability of 88.22% for the
PD3-PGV on-site EEW.

4.3. Optimum triggering thresholds given WTPGV from 5 to 35 cm/s

Fig. 9 shows the optimum TTPD3 and the resulting minimum prob-
abilities of missed + false alarm for WTPGV ranging from 5 to 35 cm/s.
These results are obtained by applying the proposed method in Section
4.2 and changing the given WTPGV. Note that the range of WTPGV from 5
to 35 cm/s is broad enough to cover all kinds of scenarios. It can be seen
that the optimum TTPD3 increases from 0.11 cm to 1.51 cm when WTPGV

increases from 5 cm/s to 35 cm/s. On the other hand, the minimum
probability of missed + false alarm decreases from 12.01% to 6.93%
when WTPGV ranges from 5 cm/s to 35 cm/s. The derived optimum

Fig. 6. Surface plot of probability of false alarm against TTPD3and WTPGV.

Fig. 7. Surface plot of probability of missed + false alarm against TTPD3and
WTPGV.

Fig. 8. Probabilities of missed alarm, false alarm, and missed + false alarm for
various TTPD3when WTPGV =10 cm/s.

Fig. 9. Optimum TTPD3and resulting probabilities of missed + false alarm for
WTPGV from 5 to 35 cm/s.
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TTPD3 for different given WTPGV in Fig. 9 can serve as future references
in the use of the PD3-PGV on-site EEW with maximum reliability.

5. Summary and conclusion

The paper presents a new application of the copula approach to on-
site EEW reliability assessment. On the basis of an existing PD3-PGV on-
site EEW, we found that a copula model consisting of the Lognormal
distribution, Weibull distribution, and the Frank copula can sa-
tisfactorily model the PD3-PGV joint probability distribution. Based on
the calibrated PD3-PGV joint probability distribution, the probabilities
of missed alarm and false alarm can be easily calculated.

Another highlight of the study is the new method for determining
the optimum PD3 triggering threshold subject to a pre-determined PGV
warning threshold that depends on the characteristics of structures. The
proposed method is based on optimization in searching for the optimum

value in corresponding to the minimum probability of missed + false
alarm. Notably, the calculation can be achieved with the calibrated
joint probability distribution present herein for calculating missed-
alarm and false-alarm probabilities, a new application of the copula
approach to propose decision-making strategies for on-site earthquake
early warning.
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Appendix. : AIC

The AIC value for identifying the best-fit marginal distribution is defined as

∑= − +
=

AIC ln f PD or PGV p q k2 ( ; , ) 2
i

N

i i
1

3 1
(A.1)

where∑ = ln f PD or PGV p q( ; , )i
N

i i1 3 is the log-likelihood for a specified distribution in which f PD or PGV p q( ; , )3 is the probability density function
(PDF) for PD3 or PGV; PD i3 or PGVi is the i-th observation for PD3 or PGV; N=780 is the sample size of the observed PD3 and PGV data; k1 = 2 is the
number of distribution parameters for all the four selected distributions.

Similarly, to identify the best-fit copula, the AIC value is given by
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in which rank(PD )i3 [or rank(PGV)i ] denotes the rank of PD i3 (or PGVi) among the list {PD , ..., PD }N31 3 (or PGV PGV{ , ..., }N1 ) in an ascending order.
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