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A Robust Algorithm for Automatic P-wave Arrival-Time

Picking Based on the Local Extrema Scalogram
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Abstract

A robust algorithm has been developed for the automatic picking of

P-wave arrival times. Owing to the properties of the local extrema scalogram (LES),
this algorithm finds all significant quasi-periodic peaks and valleys without selecting a
specific frequency. Consequently, the P-wave arrival times can be accurately derived
from the peaks and valleys of the seismic signal. A comparison of the proposed algo-
rithm with the common short-term average/long-term average (STA/LTA) method and
the Akaike information criterion (AIC) method is conducted using real data. The results
show that our method consistently outperforms both methods, especially when substan-

tial noise is present.

Introduction

The short-term average/long-term average (STA/LTA)
method (Allen, 1978, 1982) has achieved remarkable success
in automatically identifying P-wave arrivals in real-time sce-
narios situated within a quiet environment. In this approach,
a characteristic function (CF) is first defined, after which
the STA/LTA ratio is calculated. If this ratio exceeds a pre-
defined threshold, the time will be designated as a picked
P-wave arrival. STA/LTA is computational cost-effective due
to its memoryless design, which will not look back to pre-
vious window, and best suited in the real-time detection. A
few seconds of P-wave signal is all it needs to trigger a pick.
However, some difficulties are encountered during the appli-
cation of this method. First, it is limited by its one-way
design for differentiating true signals from noise. As a con-
sequence of this flaw, the STA/LTA ratio will be triggered by
false fluctuations in some cases, thereby providing erroneous
arrival times. Second, an excessive number of free parame-
ters are available for selection. In his original paper, Allen
(1978) presented a total of five parameters, and many more
parameters appeared in recent variations of the STA/LTA
method. This reflects the fact that higher order details of the
CF require additional parameters. Moreover, in addition to
the number of parameters, the meaning of each parameter
provides another level of complexity; although the parame-
ters are defined explicitly, it is not easy to discern their physi-
cal meanings.

The Akaike information criterion (AIC; Akaike, 1973;
Sleeman and van Eck, 1999) constitutes another commonly
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used picking approach. Although the AIC approach is capable
of demonstrating good results, it often provides highly erro-
neous picks. Consequently, in practice, one often determines
effective windows either by hand or by an automated method
to ensure that the AIC technique outputs the correct result.

Many approaches have been proposed based on the
above-mentioned principles to resolve problems associated
with the picking of P-wave arrival times. However, although
some of these techniques are mentioned later in this article,
this list is not exhaustive because of the scope of this article.
In the family of STA/LTA methods, Allen (1978, 1982) used
a CF of x[i]*> + C(x[i] — x[i — 1])?, and Baer and Kradolfer
(1987) later introduced a specific differential prefactor
into the CF with the form of CF = x[i]> + Dx[i]?, in which
D = SUM(«[i]*)/SUM(i{i]*). Subsequently, Kiiperkoch
et al. (2010) proposed a more sophisticated CF using higher
order statistics, such as kurtosis and skewness, to identify
the transition from Gaussian to non-Gaussian. In the family
of AIC methods, Sleeman and van Eck (1999) combined
the original AIC technique with autoregressive analysis to
improve the picking results, and Scafidi et al. (2018) defined
the search window for the AIC and updated the window recur-
sively with the calculated location. Other methods beyond
these two popular approaches have also been developed.
For example, Zhang et al. (2003) used the discrete wavelet
transform in conjunction with the AIC, Ait Laasri er al
(2013) used the cross-correlation operation, Bogiatzis and
Ishii (2015) adopted continuous wavelet analysis, Ross and
Ben-Zion (2014) used polarization analysis, and Zhu and
Beroza (2018) used deep learning techniques.

In this article, we solve the above-mentioned problems
through a different approach. Inspired by the automatic
multiscale-based peak detection (AMPD) algorithm
(Scholkmann et al., 2012), we design a new technique that
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uses the local extrema scalogram (LES) to find quasi-peri-
odic peaks within a noisy environment. Our method solves
the picking problem by initially determining all of the peaks
and valleys within the record. Then it determines the peaks
and valleys corresponding to the seismic phase arrival and
finally traces the signal back to the P-wave arrival time from
the first apparent peak or valley, whose amplitude is of the
same order of magnitude to the maximum amplitude. Our
contributions are as follows:

* We describe how we derive the proposed technique from
the AMPD algorithm to determine P-wave arrival times
(see the Algorithm section).

* We compare our method with two widely implemented

existing methods, namely, the generic STA/LTA method with

optimum parameters (see the STA/LTA Method section) and
the AIC method (see the AIC Method section). To this end,
we use real waveform data from the National Research

Institute for Earth Science and Disaster Resilience (NIED)

and plot the corresponding results for analysis (see the

Comparisons among the Methods section).

We show that our method operates effectively even under

noisy environments (see the Different Groups of Signal-to-

Noise Ratios section).

* We also demonstrate that our method can avoid common
picking errors, including noisy spikes resulting from off-
sets (see the Common Picking Difficulties section).

Algorithm

The proposed algorithm consists of three main parts.
The first part finds all of the periodic or quasi-periodic peaks.
The second part filters out all possible noise peaks and keeps
only the apparent peaks. The third part traces the signal back
to the P-wave arrival time. Figure 1 summarizes the algo-
rithm used in this study, and Figure 2 illustrates each step
using both real and synthetic data.

The first part of our method is based on the AMPD algo-
rithm (Scholkmann et al., 2012), which uses the local maxima
scalogram, a construction inspired by the wavelet scalogram,
to search for quasi-periodic peaks. Although the AMPD algo-
rithm was originally designed to locate electrocardiography
signals, it has been applied across a wide variety of disciplines;
for example, Jena and Panigrahi (2015) used it with acoustic
signals to detect rotary gear faults. In addition, because it was
recommended that the signal be detrended before applying the
original AMPD algorithm to locate the peaks and valleys, we
detrend the signal in our algorithm.

Finding Peaks and Valleys

Let x[{],i = 1,...,N be a uniformly sampled signal.
First, we determine the maximum window length wy in terms
of L

k=12, ..L. (1)
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Input seismic signal

Detrend signal

Run modified
AMPD. Figure 2a.

Finding peaks and valleys

(optional)Apply
spike noise filter

Determining the apparent peaks and valleys

Apply apparent
extrema filter.
Figure 2b.

Calculate amplitude-
squared bins

Tracing back to the P wave arrival time

Apply bin thresholds
(1,2,3). Figure 2c.

Output P wave arrival
time. Figure 2e.

Figure 1. The flowchart of the proposed picking algorithm.

in which k is the scale in the wavelet formalism and L is the
maximum analyzed scale. In other words, L corresponds to
the minimum frequency of the periodic oscillation that is
sought. In general, the value of L can be as large as N /2.
For seismological research, we assign the value of L to
correspond to the typical long-period limit of seismic P
waves, that is, 13.33 s (0.075 Hz). Our choice of this higher
period bound is more inclusive than a scale of 5 s, which
represents the 7z, value of a magnitude 8 earthquake (Wu
and Kanamori, 2005).

Second, an L x N LES matrix my; is constructed. It is
different from the original AMPD. For every scale k, i runs
from 2k + 1 to N — 2k

0, x[i] > x[i = 2k)Ax[i] > x[i + 2k]
mg; =1 0, x[i] < x[i = 2k]Ax[i] < x[i + 2k],
U,1) + 1, otherwise

2)

in which ¢(0, 1) is a continuous uniform random number
distribution in the range of [0,1].

Third, a reduced LES matrix is found, for which a row-
wise summation of m, ; is performed

N
ve =) my. for ke{l.2,....L}. 3)

i=1
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Figure 2.

Figures illustrating the steps of our method. (a) Raw peaks and valleys detected using the automatic multiscale-based peak

detection (AMPD) algorithm in black dots. (b) List of apparent peaks and valleys in black dots. (c) Bin distribution with time and the three
designed bin thresholds. (d) A problematic bin distribution that will cause trouble in our method. (e) Final result. The solid line marked with

stars is the final pick.

A global minimum of y can be found from y,, and the
corresponding k is called A

A = arg(min(y)). 4)
We then use 4 to reshape the LES matrix into a A x N matrix m

’/hk.i = My, for kE{l,Z,,/l} and lE{l,Z,,N}

)

Finally, the peaks and valleys are detected by taking the
column-wise standard deviation of the matrix m
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in which all peaks and valleys are found at {i|c; = O}.
Figure 2a illustrates the located peaks and valleys as black
dots.

Determining the Apparent Peaks and Valleys

From the above procedure, we obtained a full list of
peaks and valleys. However, although the AMPD algorithm



416

has already filtered out any extrema with an incomplete wave
shape, we still need to apply supplementary constraints to
ensure that all of the extrema are evidently associated with
the seismic wave and that the amplitude is on the same order
of magnitude as the maximum amplitude. In this work, we
determine the apparent peaks and valleys by keeping peaks
and valleys with amplitudes that are larger than 20% of the
maximum amplitude, that is,

extrema oy = 0.2 X (maximum amplitude),  (7)

in which extrema,pparen; are the apparent peaks and valleys
that are comparable to the maximum amplitude. Another
possible option is to use the detector noise level to derive a
threshold and eliminate peaks and valleys that are smaller
than this threshold. Figure 2b illustrates the results of all
apparent peaks and valleys.

When spike noise is expected, the algorithm should
include an additional prefilter to handle it. Some of the
options are as follows:

* Check the mean of the neighborhood of the extrema. For a
seismic wave, we expect some cancellation within the ran-
dom noise. For noisy spikes, the mean can be quite large.
Consequently, the mean should be smaller than a certain
threshold. For example, if x[n,] is located at an apparent
peak and x[n,] is located at a noisy spike,

n;+20 n,+20
Z x[i]| < thresholdpyie mean < Z x[d]|, (8)
n;—20 n,—20

in which 420 indicates that the next 20 elements are
included; in signal traces with a frequency of 100 Hz,
20 elements correspond to 0.2 s.

 Check the zero-crossing property. For a seismic wave, we
expect some regular zero crossing pattern, but this pattern
for a noisy spike is quite different. For example, x[n] is
located at an apparent peak, x[n;, ] and x[n;_ gn are
its nearest zero-crossing points to the left and to the right,
respectively; accordingly, x[n,] is located at a noisy spike,
and x[ny, ] and x[ny, o] are its nearest zero-crossing
points. We can write down a corresponding threshold

(nlz.right - nlz,left) < threShOldspike.zero < (n2z.right - n2z.left) .

)

Tracing the Apparent Signal Back to the P-Wave
Arrival Time

After the above process, we obtained a list of apparent
peaks and valleys. The first peak or valley is located in the
neighborhood of the first P-wave arrival. Thus, we need to
trace the signal back to the P-wave arrival time from the first
peak or valley. We collect the square of the amplitude (a?)
before the first peak or valley in bins of 0.1 s (or every 10
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samples) in reverse, that is, for data with a sampling interval
of 100 samples per second,

binj = Amp%.oos + AmP(2).99s + Amp(z).%s +...+ Amp(z)_%,
bing g, = AMPj g, + AMPG go, + AMPG gg + -+ + Ampg g, .
(10)

After we acquire all of the bins, we establish a threshold to
trace the waveform back to the P-wave arrival time. In this
work, we assign three bin thresholds in terms of the means
and standard deviations of the noise bins. These three bin
thresholds (denoted btl, bt2, and bt3) used in this work are

btl = noise bin + 3o (noise bin),
bt2 = noise bin + 4o (noise bin),

bt3 = noise bin + 5¢(noise bin), (11)
in which noise bin is the mean of a noise bin and ¢(noise bin)
is the standard deviation of a noise bin. We then use all three
acquired thresholds to find the arrival time. In practice, one
can set any bin threshold based on the noise level in the
record as long as it is possible to distinguish the noise from
the signal. To identify the arrival time, we find the first bin
satisfying the criterion in which the next three consecutive
bins are all smaller than the bin threshold value (bt). If N is
the found bin, then it must satisfy the following require-
ments:

biny > bt,
binN_O'] s < bt,

biny_g, s < bt. (12)
The details of the algorithm used to locate P-wave arrival
times are shown in Algorithm 1.

Figure 2c illustrates this process. All of the bars represent
the bin values are different times. The three thresholds are
established as horizontal lines, in which btl is the lowest and
bt3 is the highest. According to the above algorithm, we first
try to use the lowest threshold (btl) as the finding criterion.
The signal is traced back to the first apparent bin centered on
10.9 s. Unfortunately, no bin can satisfy equation (12), and
thus, the program traces the signal back to the very beginning
of the record. Then the program selects the second threshold
(bt2) as the finding criterion; this time, the program find the
bin centered on 10 s and returns it as the picked arrival time.

The quality of the data and the compatibility of the given
bin width both affect the quality of the returned pick.
Figure 2d illustrates a case of failure. In this case, the bins
suffer from a random noise distribution and consequently fail
to increase with time monotonically; as a result, the program
will return a wrong pick at 10.7 s. One possible way to fix
this problem is to increase the bin width, for example, from
0.1 to 0.2 s. Doing so will smooth the bins, and they will
increase monotonically with time.
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Data: Amplitude-squared bin values, bt1, bt2, bt3

Result: Arrival time

Set thresholdlist=[bt1, bt2, bt3];

Set n=index of first apparent peak/valley bin;

for threshold In thresholdlist do

while n is not at the beginning do
if found bin fits the requirements then

Return time of the found bin as pick;

end

n=n-1;

end
/* Fallback, if nothing is found */

Return time of the first apparent peak/valley bin;

Algorithm 1.

Tracing back to arrival time.

Data and Results

Dataset

We collect strong-motion traces of 26 recent medium- to
high-magnitude earthquakes (M > 4.6) from the NIED. We
choose traces for which we are able to pick the arrival times
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manually. The total number of traces used in this study is
2000, and the details of each event can be found in Table 1.

Determining the Reference Arrival Time Using the
AIC within a Manual Window

Here, we determine the reference arrival time to lower
the impacts of manual biases on determining specific arrival
times generated by assuming that human eyes are sufficiently
trustworthy to determine a transition from noise to signal.
After a window is assigned manually, the AIC can determine
the best-fitting arrival time as the reference pick.

STA/LTA Method

To verify that our LES method can consistently outper-
form the generic STA/LTA technique, we compare our method
with the optimum STA/LTA method. To locate the optimum
STA/LTA ratio, we need to find the best-fitting parameters.
Five parameters are used in the STA/LTA method, namely,
Cy, C,, C3, Cy, and Cs. For a trace x[i], C; and C, control
the CF through X, and dX, (Baer and Kradolfer, 1987)

X, = Ci X + (x[i] = x[i = 1]),
_ Cy(x[i] = x[i = 1])

h dt ’

CF = X3 + dX3,

(13)

Table 1
Twenty-Six Events Used in This Study

Number Origin Time (yyyy/mm/dd) UTC (hh:mm) Latitude (°N) Longitude (°E) Depth (km) My Number of Traces Used

1 2016/10/16 16:37 38.323 141.527 20 5.2 61
2 2016/10/20 11:50 35.862 140.523 37 53 63
3 2016/10/21 14:07 35.380 133.855 11 6.6 175
4 2016/11/12 06:43 38.463 141.607 58 5.9 92
5 2016/11/19 11:48 33.842 135.463 51 54 87
6 2016/11/21 06:59 35.877 140.960 17 5.0 59
7 2016/11/22 05:59 37.353 141.603 25 7.3 218
8 2016/11/22 06:39 37.243 141.377 22 5.7 25
9 2016/11/22 23:04 37.178 141.443 28 5.7 48
10 2016/11/24 06:23 37.173 141.345 24 6.2 83
11 2016/12/20 01:41 37.308 141.638 33 5.5 41
12 2016/12/28 21:38 36.720 140.573 11 6.3 147
13 2016/12/31 05:08 37.355 141.408 27 54 58
14 2017/01/05 00:44 36.862 140.978 56 53 78
15 2017/01/05 02:53 37.122 141.358 26 5.6 50
16 2017/01/28 22:40 39.760 140.767 151 5.0 46
17 2017/02/11 06:05 37.177 141.718 41 54 46
18 2017/02/19 18:19 35.730 140.663 52 54 82
19 2017/02/28 16:49 37.513 141.367 52 5.7 100
20 2017/03/02 23:53 32.645 132.132 37 53 60
21 2017/03/12 04:57 37.512 141.542 46 54 48
22 2017/04/12 03:10 36.160 140.100 54 4.6 86
23 2017/04/30 23:42 42.322 143.070 53 54 39
24 2017/05/27 22:50 36.065 135.543 17 5.1 48
25 2017/06/20 23:27 32.900 132.100 40 5.0 49
26 2017/06/25 07:02 35.900 137.600 0 5.7 111
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Figure 3.  The probability distribution functions (PDFs) of the time differences for 20% perturbations of the optimal C parameter values.

(a) Cy, optimum value: 0.995; (b) C,, optimum value: 0.02; (c) C;, optimum value: 0.165; (d) C,, optimum value: 0.00181; and (e) Cs,

optimum value: 10.0.

in which X, and X, are iterative terms starting from x[0], and
dt corresponds to the sampling interval.

After the CF is defined, the STA/LTA ratio can be writ-
ten as:

_ STA[i] _STA[i—1]+ C;(CF[i]-STA[i—1])
" LTA[i] LTA[i— 1]+ C4(CF[i]-LTA[i—1])’

(14)

in which Cj is designed to be larger than C, to provide a
greater weight to short-term changes. If R > Cj at any point,
the value of i at that point will be retained and further con-
sidered to be the P-wave arrival time.

To find the optimum values of C;—Cj that can yield best
picking result based on the given dataset, we scan through all
possible parameter combinations in the coefficient parameter
space. The results are judged based on the shape of the prob-
ability distribution function (PDF) each parameter combina-
tion produced. We further plot a series of comparisons in
Figure 3 between the proposed method and the optimum
coefficients with a 20% perturbation. It shows that the opti-
mum coefficients give the best STA/LTA result.

AIC Method

The AIC method considers the difference in the standard
deviations between two groups (i.e., the noise and the signal)
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and then defines a function to calculate the information cri-
terion. In principle, the P-wave arrival time coincides with the
minimum information criterion, at which the noise and seis-
mic-wave signal separate into two groups. In this article, we
will use the STA/LTA method to determine the effective win-
dow. Let a trace inside the effective window have N samples
and assume that the autorecursive filter length is small com-
pared with N. At the kth position, assuming the order is neg-
ligible with respect to the length of the noise or signal, the AIC
can be written as (Sleeman and van Eck, 1999):

AIC(k) = klog(aﬁois&,l tok) + (N - k) log(géignal,kJrl toN)’
(15)

in which o is the standard deviation of noise and signal, respec-
tively. The P-wave arrival time appears at the k,th position
(16)

AIC(k,) < AIC(k), Y1<k<N.

PDF of the Arrival-Time Difference

Throughout this study, we present our results as a PDF
of the time difference between the pick of the given method
and the reference pick (Figs. 3—5). This approach effectively
reveals the disparity between the reference arrival time and
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Figure 4. A comparison between the PDF of the deviation in

the picking time from the reference arrival time for the proposed
method and those for the short-term average/long-term average
(STA/LTA) and Akaike information criterion (AIC) methods.

the result of each method. Whereas a positive time difference
(pointing to the right) represents a late pick with respect to
the reference pick, a negative time difference (pointing to the
left) represents an early pick with respect to the reference
pick.

Comparisons among the Methods

Figure 4 provides a direct comparison between the PDF of
our method and the PDFs of the optimum STA/LTA and AIC
methods. Table 2 describes the results of a statistical analysis
among the three methods. Furthermore, Figures 6 and 7 show a
series of traces with different magnitudes and different environ-
ments. Figure 7 also shows some common fail picks of all three
methods. Figure 7c represents the STA/LTA at fallback when it
cannot be triggered by any signal in the trace. Figure 7e rep-
resents the STA/LTA pick on the noise before the P-wave
arrival. Figure 7g represents the inappropriate early pick of
the AIC due to the early effective window. Figure 7i represents
the inappropriate early pick of the proposed method. This inap-
propriate early pick happens when the emergent signal is long
and all of bins are still above the threshold.

Different Groups of Signal-to-Noise Ratios
We define the signal-to-noise ratio (SNR) on a decibel
scale as

SNRdB =20 loglo( (17)

AMax signal)
AMax noise ’
in which Apjay signal 18 the maximum amplitude after the refer-
ence arrival time and Ay noise 1 the maximum amplitude
before the reference arrival time.

We further categorize the dataset into three groups based
on the SNR, namely, high SNR (SNR g > 60), medium SNR
(30 < SNRg £60), and low SNR (SNRyg < 30). Table 2
shows the statistical analysis of all three groups, and
Figure 5 shows the results for these three SNR groups.

Common Picking Difficulties

Figure 8 shows a series of traces in which picking errors
occurred because of some difficulties. In Figure 8a, the

Downloaded from https://pubs.geoscienceworld.org/ssa/bssalarticle-pdf/109/1/413/4627591/bssa-2018127.1.pdf
bv National Taiwan Liniv - | ib Seriale Dent tiser

419

(a)
2
3 .
3 Methods
> This study
= STA/LTA
82 AIC
Qo
<
o
0
-2 0 2
(b) Time difference (s)
>
=3
3
© Methods
> 2 @This study
= STA/LTA
. AIC
o 1
[
[n
0
-2 0 2
Time difference (s)
(c)
> 5
§ 4
° Methods
>3 This study
= STA/LTA
] 2 AIC
Qo
o1
a
0
-2 0 2
Time difference (s)
Figure 5. The PDFs of the time differences in three signal-

to-noise ratio (SNR) groups. (a) High SNR, (b) medium SNR, and
(c) low SNR.

STA/LTA method and AIC method pick the arrival time within
the fluctuating noise before the arrival. In Figure 8c, a triangle-
shaped emergent arrival exists within the trace, hindering the
determination of the arrival time; because all three picks are
similar, it is difficult to tell which method performs the best.
In Figure 8e, a series of noisy spikes affects the trace. Our
method uses a given threshold in phase one of the above-
mentioned procedures to avoid errors in the picking associated
with spikes, but the STA/LTA and AIC methods will both pick
the wrong time.

Discussion

In this article, we developed an LES-based picking pro-
gram that exhibits smaller standard deviations of time differ-
ence than the STA/LTA method and the AIC method (Fig. 4
and Table 2). In all three SNR groups, our method demon-
strates a narrower standard deviation and a smaller mean
(Table 2 and Fig. 5). High SNR of Figure 5 shows a higher
peak at zero for AIC method. This high peak is due to many
zeros in time difference for the AIC method; an artifact reflects
the similarity between AIC picks and AIC-based reference
picks. Also, this similarity can explain the bell shape in PDF
of AIC and all the median of AIC are zeros.
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Noise Reduction and Error Level
Estimation

One advantage of our method is that it
avoids the picking of P-wave arrival times
within noise. During the first stage of our
method, a full set of peaks and valleys is
selected; this set is further used to ensure
that we focus on true seismic signals rather
than random noise. Starting from the first
apparent peak or valley, the seismic wave-
form is traced back to the true arrival time.
Although the arrival time in this study is in
some cases farther away from the refer-
ence arrival time than the pick obtained
using the STA/LTA method, the first peak
or valley is almost always in the neighbor-
hood of the P-wave arrival, and thus, the
proposed technique rarely picks a noisy
arrival.

Another interesting feature is the bin-
ning width, which automatically gives us
a benchmark of the precision because it
depends on the data quality (see Fig. 2c,d).
In contrast, although the STA/LTA method
offers two time scales, estimates of the pre-
cision of either the STA scale or the LTA
scale remain unclear; moreover, the use
of the STA scale alone is not appropriate
because the LTA scale also plays an impor-
tant role. Here, the difference between the
STA/LTA method and the proposed tech-
nique originates from the number of stages
used. In the STA/LTA method, there is only
one stage, during which the signal is distin-
guished from the noise and the arrival time
is simultaneously determined. The two time
scales, which are used to serve multiple
purposes, ultimately complicate the defini-
tion of the precision. In the proposed algo-
rithm, we separate the procedure into three
parts. The first part produces a list of all
quasi-periodic peaks and valleys, the sec-
ond part distinguishes the signal from the
noise and depicts the trace as peaks and val-
leys, and the third part selects the arrival
time. Therefore, it is easier to define the
level of precision using the proposed
method.

First Motions, Pick Uncertainty, and
Pick Quality

The first motions calculated from this
method can avoid possible false-positive
arrival times. However, the quality of the
first motions depends on many things, for
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example, the window to add up, the filter
used, and the allowed frequency band. The
pick uncertainty is best represented by the
standard deviation. And the bin width
represents the resolution width, that is, the
highest possible achievable precision. In
Table 2, all the standard deviation is larger
than the resolution. In terms of pick qual-
ity, we can separate them according to
their SNR. The high-SNR group should be
quality O, the medium-SNR group should
be quality 1, and the low-SNR group
should be quality 2.

Tendency of Early Picks

Figures 4 and 5 show that the proposed
method has a tendency to produce early
picks, compared with STA/LTA and AIC.
We think this phenomenon reflect the fact
that there are many traces with emergent
oscillation before P arrival and that can lead
to early picks. When the long duration of
emergent oscillation presented, it can result
a fail pick, like Figure 7i. Although it is
possible to modify the thresholds to achieve
better result in long emergent oscillation
cases, the trade-off is the possibility to
deteriorate other picks.

Limitations

There are some limitations to our
method. Upon an examination of each trace,
we can observe that the presence of a tri-
angle-shaped emergent signal introduces
both bias and obscurity into the picks, both
of which are difficult to handle in all three
methods. Consequently, a further under-
standing of both the mechanisms and the
waveforms of head triangle phenomena is
necessary.

Another possible limitation is the pres-
ence of noisy spikes in the neighborhood of
the P-wave arrival. Although our method
can avoid the picking of spikes before the
arrival time, it will produce unreliable
results when such spikes occur within a
head triangle or at times similar to the P-
wave arrival time.

Finally, the proposed method needs
more signals than STA/LTA. STA/LTA usu-
ally needs one or two seconds of P wave to
trigger the pick. To have some apparent
waves for analysis, the proposed method
needs about 3-5 s of P-wave signals to
have consistent result.
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