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Abstract— Earthquake early warning system uses high-speed
computer network to transmit earthquake information to pop-
ulation center ahead of the arrival of destructive earthquake
waves. This short (10 s of seconds) lead time will allow emergency
responses such as turning off gas pipeline valves to be activated to
mitigate potential disaster and casualties. However, the excessive
false alarm rate of such a system imposes heavy cost in terms
of loss of services, undue panics, and diminishing credibility of
such a warning system. At the current, the decision algorithm
to issue an early warning of the onset of an earthquake is
often based on empirically chosen features and heuristically set
thresholds and suffers from excessive false alarm rate. In this
paper, we experimented with three advanced machine learning
algorithms, namely, K -nearest neighbor (KNN), classification
tree, and support vector machine (SVM) and compared their
performance against a traditional criterion-based method. Using
the seismic data collected by an experimental strong motion
detection network in Taiwan for these experiments, we observed
that the machine learning algorithms exhibit higher detection
accuracy with much reduced false alarm rate.

Index Terms— Detection accuracy, earthquake detection,
machine learning.

I. INTRODUCTION

IN THE recent years, earthquakes occurred much more
frequently around the circum-Pacific seismic belt and usu-

ally caused severe casualties. In 2011, the 311 Tōhoku earth-
quake in Japan caused 15 891 deaths and severe damages for
the Fukushima Daiichi nuclear power plant. In 1999, more
than 2415 deaths and 11 305 severely wounded have been
confirmed in the 921 Chi-Chi earthquake in Taiwan. Since
earthquake has become a serious threat to human life and
property, a significant research effort has been devoted in
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developing earthquake early warning (EEW) systems in order
to prevent severe casualties [1]–[3]. In particular, Taiwan is
located on the border of the Eurasian plate and the Philippine
Sea plate. The special geological characteristics around the
island cause more than 100 felt earthquakes each year on or
near the island. The high population density on the island
generates a desperate demand for reliable real-time earthquake
detection.

Accuracy is one of the most important issues for EEW
systems since false alarms may generate unnecessary panic
and cause significant economic loss. Unfortunately, sensor
readings are usually corrupted by noise. It is very challenging
to automatically identify the occurrence of earthquakes in real
time without human inspection. Traditional anomaly detection
schemes in signal processing are usually based on certain
statistical models [4], [5]. However, seismic signals may
not follow those theoretical models since earthquakes can
occur in locations with different geological conditions. Simple
detection schemes could easily misread certain vibrations as
earthquakes. Conventional earthquake detection schemes usu-
ally monitor certain criteria to determine the occurrence of an
event. For example, if the ratio of the short-term average (STA)
over the long-term average (LTA) of the shaking acceleration
is greater than a preselected threshold, it is regarded as the
presence of an event [6]–[8]. In order to reduce false alarms,
several other criteria are applied to determine whether the
event is a true earthquake. Thresholds for those criteria need
to be carefully chosen. However, false alarms could still
occur from time to time since the selection of thresholds
highly depends on human experiences. Recently, some work
develops the detection models using neural networks [9], [10].
Nevertheless, most of the work uses the whole waveform
of an event to determine the presence of the earthquake.
Those schemes are better for postevent processing rather than
real-time detection. Our work aims to determine the presence
of the earthquakes within a very short period at the beginning
of an event and the criteria for determining an earthquake are
learned by machines automatically.

Machine learning is a methodology to classify the monitored
objects into different categories according to the features
learned from the training data. Through a thorough collection
of data from various types of the monitored events, certain
invisible properties can be revealed by the learning process.
Proper criteria for event classification are formed automatically
and the accuracy of correctly identifying the target events can
be improved.
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In this paper, three advanced machine learning schemes,
namely, K -nearest neighbor (KNN), classification tree, and
support vector machine (SVM), were exploited for earthquake
detection. The learning models were built as a binary classifier
to identify the presence or absence of an earthquake. To collect
the seismic wave data, an experimental high-density strong
motion detection network has been built in Taiwan with
more than 600 sensors deployed over the main island and
several small islands around Taiwan. The relatively low cost of
the sensors, which are developed by microelectromechanical
System (MEMS) technologies, makes a high-density deploy-
ment possible. The motion accelerations in the x-, y-, and
z-axes were measured by each sensor. Earthquake events from
January 2016 to December 2017 were collected to conduct
the simulations. Features extracted from the waveforms were
used to train the learning-based schemes. The detection results
were compared to those from the traditional criterion-based
method. From the comparisons, the accuracy and reliability of
the learning-based detector were significantly improved by the
learning-based schemes.

This paper is organized as follows. Section II introduces
the high-density seismic network that was used to collect
the seismic wave data. Section III presents the proposed
learning-based detection schemes. Section IV compares the
learning-based schemes and the traditional criterion-based
method. Section V briefly addresses the related work. Finally,
the conclusions of this paper are presented in Section VI.

II. DATA COLLECTION

This section first describes the seismic network deployed
for earthquake data collection in Taiwan. The events and data
used to train the learning-based schemes are then presented.

A. Seismic Network

Traditional strong motion monitoring systems usually con-
tain several sensors deployed in a large geographic area
far between each other. One sensor has to cover a rela-
tively large area resulting in the low spatial resolution of
the collected data. In contrast, an experimental high-density
seismic wave collection network using low-cost sensors has
been deployed in Taiwan [1]. The sensors, named Palert as
shown in Fig. 1(a), are developed by MEMS Technology. The
high-density deployment makes it possible to better cover the
monitored region of interest. In 2008, there are 636 Palert
stations deployed on the island of Taiwan and a couple of
nearby islands as shown in Fig. 1(b). All of them are connected
through the Internet and have the capability of sampling the
motion accelerations in the x-, y-, and z-axes with 100-Hz
sampling rate. The acceleration values are transmitted to a
main server in Taipei.

Fig. 2 shows the seismic waves collected by the network for
the Meinong earthquake in Taiwan on February 6, 2016. The
Richter magnitude of the earthquake is 6.6. The earthquake
caused very serious damages in the south of Taiwan including
more than 100 deaths and many buildings collapse. Fig. 2
shows the vertical acceleration of the seismic waves collected
by the Palert stations shown in Fig. 3. The locations and the

Fig. 1. Palert and the Deployment of the network. (a) Palert. (b) Deployment
of the Palert stations.

distance of the Palert stations to the earthquake epicenter are
listed in Table I. Note that the sensor density in the network
is very high and the magnitude of the earthquake is also
large. Thus, almost all of the Palert stations have recorded
the seismic wave. Due to the lack of space, only the waves
recorded by several selected stations are shown in Fig. 2. The
Palert network collects seismic wave data in real time and can
be used to implement many applications such as earthquake
detection and early warning.

B. Events and Data

This paper used the time series data, i.e., the motion accel-
eration, collected by the Palert network to conduct the training
of the learning-based schemes. The events included in our data
set are those announced by the Central Weather Bureau (CWB)
in Taiwan from January 2016 to December 2017. The CWB
classifies the events into two categories, namely, the numbered
earthquakes and the regional earthquakes. The following rules
are applied for the numbered events.

The local magnitude of the earthquake is greater than
4.0 and at least one of the following condition holds.

1) When the event occurs, at least one sensor station reports
the event with intensity greater than four or at least two
stations report the event with intensity greater than three.

2) When the event occurs, at least one sensor station at any
county capital reports the event with intensity greater
than three or at least two stations at any county capital
report the event with intensity greater than two.

3) When the event occurs, at least one sensor station at
Taipei or Kaoshiung reports the event with intensity
greater than two.

The following rules are used to classify the regional events.

1) Any sensor stations report the event with the intensity
of four or above.

2) The Richter magnitude of the earthquake is greater than
3.5 and, at least one sensor station reports the event with
intensity greater than three or at least two stations report
the event with intensity greater than two.
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Fig. 2. Waveforms of the selected Palerts for the 2016 Meinong earthquake.

3) Any events that not fulfill the previous two criteria but
have been reported as an event that affects the general
public.

Note that the above-mentioned rules are used by the CWB
in Taiwan to classify the events and the sensor stations used
in the rules are the stations in CWB’s network not the Palert
stations in our network.

For the numbered events, 453 waveforms recorded by the
Palert stations from 65 earthquakes with a magnitude between
2.5 and 6.9 were collected in our data set. Fig. 4 shows the
epicenters and the magnitude of the CWB-numbered events.
The circles represent the magnitudes of the corresponding
events. For the regional events, there were 133 waveforms
from 63 earthquakes in the data set. Fig. 5 shows the epicenters
and the magnitude of the regional events. The magnitude is
between 2 and 5. From the figures, one can observe that
the CWB-numbered events usually have larger magnitude and
most of the regional events are relatively small in terms of
magnitude. In addition, most of the events occurred in the
east or south of Taiwan. Table II and III list the statistics of
the magnitude and depth of the events in the two categories.

Fig. 3. Selected Palerts for the 2016 Meinong earthquake.

TABLE I

DETAILS OF THE PALERT STATIONS IN FIG. 2

Nonearthquake events were also collected in our data set.
This kind of events could be caused by situations such as a
vehicle passing by the vicinity of a sensor or other noises
generated by the instruments. The purpose to include non-
earthquake events is to make the model learn the differences
between the earthquake and nonearthquake waveforms. Total
600 waveforms from randomly selected nonearthquake events
were included in the data set.

III. EARTHQUAKE DETECTION

In this section, the proposed earthquake detection process
is presented. Assume that the acceleration of seismic waves
is sampled and collected by seismic sensors. The detection
process is divided into two phases. In the first phase, the real-
time series of acceleration collected by a sensor is inves-
tigated by a fast event screening process to determine the
presence of a potential event. In the second phase, the can-
didate events are further verified by a binary classifier based
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Fig. 4. CWB-numbered events in the data set.

Fig. 5. Regional events in the data set.

on machine learning techniques to check whether the event is
a true earthquake or not.

A. Event Screening

In practice, two types of seismic waves are generated
by an earthquake, namely, P-wave and S-wave, i.e., pri-
mary wave or pressure wave and secondary wave or shear

TABLE II

MAGNITUDE OF THE COLLECTED EVENTS

TABLE III

DEPTH OF THE COLLECTED EVENTS

wave, respectively. P-wave is a type of longitudinal wave.
In other words, the particles in the medium vibrate along the
axis of the propagation. P-waves travel faster than S-waves
and, hence, can reach the sensors earlier. Therefore, P-wave is
usually used to detect the occurrence of earthquakes in con-
ventional early warning systems. In general, seismic sensors
can record the acceleration of seismic waves in x-, y-, and
z-axes and the vibration caused by P-wave is usually in the
vertical direction. Consequently, in this paper, the time series
in the z-axis was used to detect the presence of earthquakes.
Since the sampling rate of the sensors could be pretty high,
a fast screening scheme is first used to determine potential
target events. The screening process should be fast enough to
prevent processing lag. False alarms can be tolerated in the
screening process since the candidate events will be further
verified later in the second phase. In contrast, the missing rate
should be as low as possible in the screening phase.

A simple way to identify an anomaly event in the first phase
is to check the fluctuation of the amplitude of the seismic
wave. Given a seismic wave, let Ai denote the amplitude of
the seismic wave at sample i and Di denote the difference of
the amplitude between sample i and sample i − 1, i.e., Di =
Ai − Ai−1. A characteristic function is defined as

Ci = A2
i + D2

i . (1)

Note that the difference in consecutive samples can be used
to indicate the condition of the signal fluctuation and the
characteristic function amplifies the variation in the signal
amplitude. However, since samples are always corrupted by
noise, the characteristic value at a particular sample may
not reflect the true condition of the monitored environment.
To mitigate the influence of the noise, the STA, and the LTA of
the characteristic values are exploited. To evaluate the average
values in real time, STA and LTA are implemented based on
the running average defined in (2) and (3), respectively,

Si = Si−1 + Ws × (Ci − Si−1) (2)

Li = Li−1 + Wl × (Ci − Li−1). (3)

The two formulas actually have the same form but different
weighting parameters, where Ws should be greater than Wl .
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The two weighting parameters control the impact of the
current signal on the running averages. If the weight is high,
the current signal dominates in the running average, and thus,
the result can represent the signal condition in the recent
interval. In contrast, if the weight is low, the current status
does not affect much of the running average and the result can
better characterize the long-term condition of the monitored
signal. The initial values, i.e., S0 and L0, can be set to be a
small value or zero, since, if no events are present, STA and
LTA should be similar and the observed signal should be close
to the average noise level. To detect a potential event, the ratio
of STA over LTA is checked as follows:

ri = Si

Li
≷ η. (4)

If the ratio is greater than the threshold η, it is recognized
as a potential event and the second phase will be triggered to
verify whether it is a true earthquake. Otherwise, the screening
process will continue to check the next sample. Note that in
the first phase, it is allowed to choose a lower threshold so
that true events would not be missed. Although the false alarm
rate could be high in the first phase, the following verification
in the second phase can reduce the false alarm rate by using
the learning schemes. In this work, the weights Ws and Wl

are 0.6 and 0.015, respectively, and the threshold η is 0.04,
which are used in the current Palert network.

B. Feature Extraction

In the second phase, learning-based schemes are used as a
binary classifier to verify whether an earthquake is present.
Basically, the learning-based schemes have to analyze the
features of the collected training data and build rules to
characterize those features for the targeted categories. The
built rules then form the model for classifying future obser-
vations. Theoretically, the precision of the classification can
be increased if sufficient information about the features of the
data in different categories is provided.

In this work, seven features selected from the collected
seismic waves were used to build the classification models.
The selected features are defined as follows and illustrated
in Fig. 6. Note that the picking sample in a seismic wave
is defined as the sample where the STA/LTA ratio is greater
than the threshold η in (4) and the second verification phase
is triggered.

F1: The first peak amplitude after the picking sample.
F2: The difference between the picking sample and the next

sample. It can indicate the condition of fluctuation of the
signal. Specifically, the feature is defined as follows:

F2 = |Ai+1 − Ai | (5)

where Ai is the amplitude of the picking sample.
F3: The running average of the absolute amplitude of the

acceleration at the picking sample. Specifically

Āi = (1 − Wm) × Āi−1 + Wm × |Ai | (6)

where Wm is the weight of the current sample in the
running average. The initial value for A0 can be chosen

Fig. 6. Feature extraction.

by using any noise sample values of the acceleration.
In fact, A0 can be chosen randomly and the running
average will converge to the average noise level in a
short period of time if no events occur. In this work,
the weight Wm is set to be 0.99, which is used in the
current Palert network.

F4: The mean of the absolute amplitude of the acceleration
in the two-second window following the picking sample,
that is,

F4 = 1

I

i+I∑

j=i+1

|A j | (7)

where i is the index of the picking sample and I is the
number of samples within two seconds.

F5: The peak amplitude of the acceleration in the
two-second window following the picking sample

F5 = max
i≤ j≤i+I

|A j | (8)

where i is the index of the picking sample and I is the
number of samples within two seconds.

F6: The peak velocity in the two-second window after the
picking sample

F6 = max
i≤ j≤i+I

|Vj | (9)

where Vj is the velocity at time j and i is the index of
the picking sample. Note that Vj can be calculated by
the integral of the acceleration.

F7: The reference level for event checking

F7 = Li × η (10)

where Li is the LTA of the characteristic value at the
picking sample. Note that from (4), F7 is the reference
level for the STA to check for abnormal events. If STA
is too small, the event may not be an earthquake even (4)
is satisfied.

The feature values are also normalized as follows:

Zi = (Fi − μi )/σi (11)

where μi and σi are the mean and standard deviation of feature
Fi , respectively. Note that the data set includes the feature
values of both the earthquake and the nonearthquake events.
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The training data set is the collection of the feature records of
the collected time series.

C. Event Verification

The potential events, which pass the screening in the
first phase are verified by the learning-based schemes. Three
machine learning schemes were exploited to verify the events,
namely, KNN, classification tree, and SVM. In this section,
the learning-based schemes are introduced and the experi-
ments are conducted to determine proper parameters for the
learning-based schemes when performing the detection.

1) Evaluation Metrics: Before diving into the learning
schemes, the metrics used to evaluate the detection perfor-
mance are first described. Precision and recall are the typical
metrics for evaluating the classification performance. For the
earthquake detection, precision is the fraction of the reported
events that are true earthquake events. Recall is the fraction of
the true earthquake events that are reported. Let TP, FP, and FN
denote the number of true positive events, false positive events,
and false negative events, respectively. True positive events
are those events that are, indeed, earthquakes and the detector
also reports the events as earthquakes. False positive events are
those that the detector reports the events as earthquakes but
the events are actually not earthquakes, i.e., the false alarms.
False negative events are those that are true earthquakes but the
detector does not report, i.e., the missing events. Specifically,
precision and recall are defined as follows:

Precision = TP

TP + FP
(12)

Recall = TP

TP + FN
. (13)

Note that 1-Precision is the false alarm rate and 1-Recall is
the missing rate. The above two metrics characterize different
aspects of the detection performance. To provide an integrated
evaluation, the well-known F-score [11] is used. Specifically,
F-score is defined as

Fs = 2 × Precision × Recall

Precision + Recall
. (14)

F-score is the harmonic mean of precision and recall. It is a
statistical measurement of the accuracy for a binary classifier
and usually used to quantitatively characterize the quality of
the classifier in the machine learning area. A higher F-score
indicates better classification quality. These metrics are used
as the metrics to select appropriate parameter values for the
learning-based schemes in the following experiments.

2) K -Nearest Neighbors: KNN is one of the fundamental
schemes to use the knowledge from historical statistics [12].
In the scheme, the distance between a new observation and
each feature record in the training data set is calculated. The
top K records with the shortest distance are selected to do
a majority vote. The major category of the selected feature
records determines the category for the observation. In general,
K is an odd number and the parameter K depends on the data
collected for a particular application. A simple distance metric
is the Euclidean distance, which is also used in this work.

To select the parameter K , three training data sets are built
to conduct the experiments. The CWB-numbered event data

Fig. 7. Performance of the KNN scheme. (a) Precision. (b) Recall.
(c) F-score.

set contains the feature records of the CWB-numbered events
and the nonearthquake events. The regional event data set
contains the feature records of the regional events and the
nonearthquake events. The total event data set contains all
the feature records from the CWB-numbered events, regional
events, and the nonearthquake events. The results of the KNN
scheme are shown in Fig. 7. Each data point shown in the
figure is an average of 50 runs of ten-way cross validation.
In the ten-way cross validation, it randomly selects nine-tenth
of the data records as the training data and the other one-tenth
as the testing data. The results are evaluated when performing
the classification on the testing data.
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Fig. 8. Example of the built tree model.

The experiment results show that, in general, F-score
decreases as K increases. The error bar at each data point is
the interval of one standard deviation. From the figures, it is
better to use a small K for the classification. In this work,
K is chosen to be five. In addition, the model built by the
CWB-numbered event data set has a better performance than
that built by the regional event data set. It is because most of
the events in the regional event data set have relatively small
magnitude and signal-to-noise ratio. Consequently, it could be
more difficult to determine the presence of the earthquakes.
The total event data set has the best performance since the
variety of the events in the training data set provides more
information about the features of the earthquakes. Therefore,
the classification quality can be improved.

3) Classification Tree: Classification tree is also one of the
general models to make a prediction for classification [13].
The training data are used to build a tree, which characterizes
the decision rules. Each leaf of the tree represents a particular
class for the final prediction. The branch nodes of the tree
are the feature cut-points, which lead the decision to the
potential class for the input event. Specifically, each branch
node contains a rule based on a particular feature to decide the
path to the leaf. The tree is usually built by a recursive method
from the root that contains all the training data. At each
branch node, a feature is selected for the node to best split
the data in the node into two subsets and generate two child
nodes. The metric for the splitting usually characterizes the
homogeneity of the data after the splitting. The process is
executed recursively on each child node until all the data in a
node belongs to the same class or some predefined rules are
met; for instance, the size of the tree.

In this scheme, the tree size has a significant impact on the
decision quality. If the tree size is too small, the accuracy of
the decision may be low. If the tree size is too large, the model
may overfit the training data. Let N be the maximum number
of splitting the branch nodes when building the classification
tree. Experiments are conducted to determine an appropriate

value for N . Fig. 8 shows an example of the built tree model
for the total data set. Note that the built tree model might
be slightly different in each iteration of the ten-way cross
validation since it randomly selects nine-tenth of the collected
feature records as the training data. In the tree, F5 and F2
are used twice at different branch nodes, which are close
to the root. One can expect that the two features can have
higher impact on the detection performance. Fig. 9 shows the
impact of N on the detection performance. From the results,
the detection quality increases as N grows large. If N is too
small, the classification may not be accurate. However, if N
is set to be large, the homogeneity level of the leaf nodes may
be reached before the number of splitting reaches N . Thus,
the detection performance would not change too much when
N increases. From the results, the models built by the total
event data set and the CWB-numbered event data set have
similar performance, and both are better than that built by
the regional event data set. In general, the performance has
a high correlation to the signal-to-noise ratio of the data in
the corresponding training data sets. Finally, in this work, N
is chosen to be 15 since the detection performance does not
change much if N is greater than 15, but the training time is
expected to be longer.

4) Support Vector Machine: SVM is basically formulated as
a quadratic optimization problem [14]. The scheme determines
a hyperplane with the maximum margin in a high-dimensional
feature space, and the training data are classified into two
groups by the hyperplane. A reasonable choice of the hyper-
plane is the one which the distance, or margin, to the nearest
data point in each side of the hyperplane is maximized.
Since the division of the training data may not be linear,
a kernel function is often used to map the data points to a
higher dimensional space where the classification can be easily
performed.

In SVM, the box constraint controls the penalty imposed by
the margin-violating data items when calculating the classifi-
cation hyperplane. Small box constraint allows larger margin
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Fig. 9. Performance of the classification tree scheme. (a) Precision.
(b) Recall. (c) F-score.

violation but spends less training time. In contrast, large box
constraint could generate more tight classification hyperplane
but leads to longer training time.

Experiments were also conducted to select an appropri-
ate box constraint for the SVM scheme. From the results
in Fig. 10, the detection quality does not change much after
box constraint larger than one. For the sake of training time,
small box constraint is preferred. In this work, box constraint
is set to one.

IV. EXPERIMENTS

In this section, the detection quality of the learning-based
scheme is compared to the traditional criterion-based detec-
tion method. An integrated scheme that integrates the three

Fig. 10. Performance of the SVM scheme. (a) Precision. (b) Recall.
(c) F-score.

learning-based schemes by majority vote was also investigated.
The impact of each selected feature on the performance of the
learning-based schemes was further evaluated. Experiments
were conducted to compare the performance in terms of the
detection quality and the time for training and predicting.

A. Criterion-Based Method

The criterion-based method is the traditional scheme used to
detect earthquakes. It is conducted as follows. Once a sample
passes the first phase screening, the features, F5, F6, and
F7, are used to check the events by thresholds. Experiments
to select the thresholds for the features are shown in Fig. 11.
In the experiments, the default thresholds of F5, F6, and F7
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Fig. 11. Thresholds selection for the criterion-based method. (a) F5.
(b) F6. (c) F7.

are set to be 1.1, 4, and 0, respectively, where the F-score is
relatively high. The default values are also the final decisions
for the associated feature. At each experiment, one of the
thresholds is inspected while the other parameters remain
the same. After the first phase screening is passed, if the
feature values are greater than the thresholds, the criterion-
based scheme issues an alarm of the earthquake event. F7
adds a further constraint on the STA of the characteristic value.
Recall that Li × η is the reference level for STA from the
inequality in (4). Therefore, not only the ratio of STA/LTA
should pass a certain level but also the STA should be high
enough if it is recognized as an earthquake.

Fig. 12. Feature impact on the learning-based schemes. (a) KNN.
(b) Classification tree. (c) SVM.

1) Feature Impact: The impacts of the seven features on the
learning-based schemes are also studied. In each experiment,
one of the features is removed from the training data set
and the performance of the detector based on the other
six features is evaluated by F-score. The experiments are
conducted for all of the three learning-based schemes and
the results are generated by ten-way cross validation. Fig. 12
shows the results for feature impact. The label on the x-axis
is the removed feature in the corresponding experiment. For
example, if the label is ˜F1, then the result is generated by the
model trained by F2 to F7. One can observe that F2, which
is the difference in the acceleration amplitude between the
picking sample and the next sample, has the most impact on
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Fig. 13. Performance comparisons.

KNN and classification tree. For classification tree, F2 and
F5 have the most impact, which approves the observation
from the tree structure. In addition, it is obvious that F2
could highly affect the detection since F2 may have substantial
change when the seismic wave arrives at the sensor. However,
SVM is highly affected by F5, which is the peak acceleration
amplitude in the two-second window following the picking
sample. From the results, one can conclude that F2 and F5
have the most impact on the detection. In contrast, F3, which
is the running average of the absolute acceleration at the
picking sample, has the least impact.

2) Detection Quality: The detection performance of
the learning-based schemes is compared to that of the
criterion-based method. In addition, an integrated scheme that
integrates the three learning-based schemes by majority vote
is built. Again, the results are the average over 50 runs of
ten-way cross validation. Fig. 13 shows the comparison results
of the detection performance. Obviously, the learning-based
schemes outperform the traditional criterion-based method in
all the three data sets. Among the three learning schemes and
the integrated scheme, the classification tree scheme works
slightly better than the others. This is because some of the
events are only identified by the classification tree scheme but
not the other schemes.

3) Time for Prediction: Table IV shows the average training
time and predicting time of the learning-based schemes. The
experiments are run on a computer with core i7 CPU and 4-G
RAM. Theoretically, training the models spends more time.
The predicted decision can be made relatively quick once the
models have been built. Note that KNN has no training phase.
From the results, classification tree needs relatively shorter
training time than SVM. For predicting time, all the schemes
can make the detection decision within a very short time.
However, KNN spends longer time than the others because
KNN actually compares the distance of the observed data to
all the feature records in the training data set. The other two
schemes can calculate the predict decision within 1 ms. For
the criterion-based method, the predicting process is almost
finished instantly.

V. RELATED WORK

Recently, much research effort has been devoted to EEW
over the world [2], [3], [15]. Japan has launched a public
earthquake warning system since 2007 [16]. The system aims
to provide the expected arrival time and seismic intensity

TABLE IV

AVERAGE COMPUTATION TIME

before the hit of the strong motion in each subprefectural area.
Taiwan has also been developing EEW systems to prevent
disasters caused by earthquakes [1], [15]. In [1], a high-density
seismic sensor network is built to capture earthquakes and
provide early warnings. Earthquake detection has also been
studied in Europe [17] and the United States [18]. In general,
the average ground acceleration and ground velocity of seismic
waves are used to determine the presence of an earthquake.
Many further checking criteria that are manually tuned by
experienced personnel are also developed to verify the occur-
rence of an earthquake and to avoid false alarms. In general,
a trial-and-error process is inevitable to select appropriate
system parameters.

Earthquake detection is highly correlated with anomaly
detection. Many anomaly detection techniques have been
explored extensively in the context of sensor networks [5],
[19]. Conventional schemes for anomaly detection rely on
maximum likelihood or hypothesis testing, which require the
explicit statistical models for the investigated events [4], [20].
In [5], a collaborative detector based on hypotheses testing is
proposed. The goal is to maximize the detection probability
subject to a false alarm rate. In [21], the detection problem
is formulated for M hypotheses in a large sensor network.
It shows that it is asymptotically optimal to divide the sensors
into M(M−1) groups as the number of sensors goes to infinity.
Fault tolerance for target detection is considered in [22]. The
outliers of the observations are dropped when doing the fusion
for the final consensus decision. In [23], Gaussian mixture
models (GMMs) are used to build anomaly detection models in
an on-line manner. The proposed approach can learn the GMM
that adapts to nonstationary sources of data. Some other work
develops the techniques for anomaly detection using SVMs
[24], [25]. In general, the SVMs classify the observations
into different categories using the hyperplane developed in
the trained model. For most of the anomaly detection studies,
the schemes must develop a theoretical model for the moni-
tored signal. However, in practice, the event signals could be
complex and do not follow the theoretical models.

Artificial intelligent techniques such as neural net-
works have also been exploited in analyzing seismic
signals [26]–[28]. In [26], a knowledge-based system is
developed to automatically interpret the seismic signal such
as the time of the beginning and the end of an event.
Some studies use artificial neural networks (ANNs) to solve
the problem of discriminating natural earthquake signals
from other waveforms of man-made events such as under-
ground nuclear explosions. In [27], a simple three-layered
ANN is built to determine the earthquake events and
nuclear explosions. In [29], ANNs are used to classify seismic
events in eastern and northern Europe. Although the previous
work uses the real data to train the neural network models,
most of the studies are based on the whole waveforms during
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the events, which may be suitable for postevent processing but
inappropriate for real-time detection.

Recently, there is also work that develops earthquake
detection systems based on community sensing that uses
accelerometers in cell phones held by public community
[30]. Each cell phone identifies the presence of an earthquake
based on the hypothesis testing inferred from a statistical
model. Then, a final decision is made by fusing the reports
from the cell phones. The proposed scheme is interesting
but difficult to realize in practice. in addition, the stability
of the participating cell phones could substantially affect the
performance of the detection.

VI. CONCLUSION

Machine learning is the technique that can make a variety
of decisions about the observations based on the extracted
knowledge from the historical data. In this paper, the learning-
based schemes are exploited to identify the presence of
earthquakes. The features of the seismic waves collected
from historical events are used to train the classifier for
earthquake detection. Three learning-based schemes are built
in this paper to perform the verification of earthquake events,
namely, the KNN, classification tree, and SVM. From the
experiments, the detection performance of the learning-based
schemes outperforms the traditional criterion-based method.
In particular, one can envision that the reliability of earthquake
detection can be dramatically increased if the learning-based
schemes are adopted. Further studies about the fusion of local
predictions and epicenter localization are worth to be explored.
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