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Abstract Moment tensor decomposition is a method
for deriving the isotropic (ISO), double-couple (DC),
and compensated linear vector dipole (CLVD) com-
ponents from a seismic moment tensor. Currently,
there are two families of methods, namely, standard
moment tensor decomposition and Euclidean moment
tensor decomposition. Although bothmethods can usu-
ally provide workable solutions, there are some minor
inconsistencies between the two methods: an equality
inconsistency that occurs in standard moment tensor
decomposition and the pure CLVD unity and flip basis
inconsistency encountered in Euclidean moment ten-
sor decomposition. Moreover, there is a sign problem
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when disentangling the CLVD component from a DC-
dominated case. To address these minor inconsistencies,
we propose a newmoment tensor decomposition method
inspired by both previous methods. The new method
can not only avoid all these minor inconsistencies but
also withstand deviations in ISO- or CLVD-dominated
cases when using source-type diagrams.

Keywords Focal mechanism · Compensated linear
vector dipole · Theoretical seismology

Article highlights

• We examine the inconsistencies among current
moment tensor decomposition methods.

• Based on insights from observations of these
inconsistencies, we propose an overall consistent
moment tensor decomposition method.

• We discuss some interesting features of the proposed
method and how to extend it to additional applications.

1 Introduction

The seismic moment tensor, which describes the basic
characteristics of an earthquake, constitutes one of the
most crucial quantities derived from point-source
approximations. The spectral decomposition theo-
rem guarantees that the moment tensor must con-
tain real eigenvalues. To associate a physical pro-
cess with an earthquake, the three-eigenvalue tuple
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is decomposed into three elementary components:
the isotropic (ISO) component, the double-couple
(DC) component, and the compensated linear vector
dipole (CLVD) (Knopoff and Randall 1970) com-
ponent. However, there is no universal method for
decomposition. In recent years, some interest in
revisiting the decomposition methods has arisen
due to progress in observing non-DC microseismic
events (Miller et al. 1998; Eaton and Forouhideh 2010;
Chapman 2019).

Moment tensors can be decomposed using a variety
of methods that, roughly speaking, can be divided into
two families: standard methods and Euclidean meth-
ods. The standard method family (Hudson et al. 1989;
Jost and Herrmann 1989; Julian et al. 1998; Vavryc̆uk
2015) utilizes the difference between the basis and its
inner product vector to generate the correct magni-
tude of a pure CLVD moment tensor. There have been
many recent developments and new variations. For
example, there is an effort to pursue a uniformly dis-
tributed parametrization (Chapman 2019). In contrast,
the Euclidean method family (Chapman and Leaney
2012; Zhu and Ben-Zion 2013) maintains the orthog-
onality of the three bases, and thus, the calculations
can be performed through a series of projections along
the three bases, thereby generating the exact expan-
sion of a moment tensor. A series of papers discusses
the 3D geometry of its unique lune-shaped param-
eter space (Tape and Tape 2012a; 2015; 2019).
Finally, there are some efforts to reparametrize the
decomposition results, which can also result in some
inconsistencies. There is a review paper that sum-
marizes all of the currently proposed parametrization
schemes for moment tensor decomposition (Aso et al.
2016).

1.1 Standard moment tensor decomposition

Here, we summarize the standard moment ten-
sor decomposition method. The family of standard
moment tensor decomposition is large and widely
used. Roughly speaking, any decomposition that has
a quadrilateral scale plot likely belongs to this fam-
ily. We choose to use one specific setup adapted from
Vavryc̆uk (2015) to represent the entire family. All
of the quantitative phenomena discussed below also
apply to other methods within the standard family. The
choice of this specific setup is done without loss of
generality.

The first step is to diagonalize the moment ten-
sor into three eigenvalues, which are then ordered into
M∗

1 ≥ M∗
2 ≥ M∗

3 . Because all of the off-diagonal
terms are zero, we can effectively group the ordered
eigenvalues into a vector,

M∗ =

⎡
⎢⎢⎣

M∗
1

M∗
2

M∗
3

⎤
⎥⎥⎦ , (1)

and then we can transform the moment tensor decom-
position process into the decomposition of vector
M∗.

1.1.1 The type I case

When

M∗
1 + M∗

3 − 2M∗
2 ≥ 0, (2)

the basis vectors are

ES
ISO =

⎡
⎢⎣
1

1

1

⎤
⎥⎦ , ES

DC =
⎡
⎢⎣
1

0

−1

⎤
⎥⎦ , ES

CLV D = 1

2

⎡
⎢⎣
2

−1

−1

⎤
⎥⎦ ,

(3)

and the three decomposition components are

MS
ISO = 1

3
(M∗

1 + M∗
2 + M∗

3 ) = 1

3
M∗ · ES

ISO, (4)

MS
CLV D = 2

3
(M∗

1 + M∗
3 − 2M∗

2 ) �= 2

3
M∗ · ES

CLV D, (5)

MS
DC = M∗

2 − M∗
3 �= M∗ · ES

DC. (6)

Note that except for the ISO component, all other
components are not proportional to the projection
along the basis vectors. Additionally, note how the
components of the basis vectors are kept preordered.

1.1.2 The type II case

When

M∗
1 + M∗

3 − 2M∗
2 < 0, (7)

the basis vectors are

ES
ISO =

⎡
⎢⎣
1

1

1

⎤
⎥⎦ , ES

DC =
⎡
⎢⎣
1

0

−1

⎤
⎥⎦ , ES

CLV D = 1

2

⎡
⎢⎣
1

1

−2

⎤
⎥⎦ ,

(8)
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and the three decomposition components are

MS
ISO = 1

3
(M∗

1 + M∗
2 + M∗

3 ) = 1

3
M∗ · ES

ISO, (9)

MS
CLV D = 2

3
(M∗

1 + M∗
3 − 2M∗

2 ) �= 2

3
M∗ · ES

CLV D, (10)

MS
DC = M∗

1 − M∗
2 �= M∗ · ES

DC. (11)

1.1.3 Scale factors

The scalar moment is defined as

MS
0 = |MS

ISO | + |MS
CLV D| + MS

DC, (12)

where the unity is preserved in the most straightfor-
ward way. However, there are different definitions
defining the scalar moment. For example, Vavryc̆uk
(2005) used two different spectral norm moments M ,
M , to maintain the unity equation.

In addition, the three scale factors are defined as

CS
ISO = MS

ISO

MS
0

, CS
DC = MS

DC

MS
0

, CS
CLV D = MS

CLV D

MS
0

.

(13)

Moreover, the unity equation of the three scale
factors is linear,

|CS
ISO | + CS

DC + |CS
CLV D| = 1 (14)

1.2 The equality inconsistency in standard moment
tensor decomposition

The equality inconsistency in standard moment ten-
sor decomposition occurs in either the type II or type
I case (type II in our setup), and it can be demon-
strated with ease by considering a pure CLVD. Con-
sidering an ordered eigenvalue vector of the moment
tensor M∗ = (1/2, 1/2, −1)T , which is essentially
the eigenvalue vector used in Riedesel and Jordan
(1989), the only nonzero coefficient is MS

CLVD =
−1. Although the sign and magnitude of this coef-
ficient seem reasonable, the expression for the full
decomposition reveals the abovementioned issue,
⎡
⎢⎢⎣
1/2

1/2

−1

⎤
⎥⎥⎦ �= −1

⎡
⎢⎢⎣
1/2

1/2

−1

⎤
⎥⎥⎦ = MS

CLVDES
CLVD. (15)

Note that for the method in Hudson et al. (1989),
the equality inconsistency is observed in the type II

case, for example, M∗ = (2, −1, −1)T . The standard
method family can only fix one case at a time and will
inevitably produce an equality inconsistency in the
other case. It cannot have both cases fixed at the same
time. Moreover, one may think that the equality issue
can be easily solved by switching the sign of the type
II CLVD basis vector. This will work; however, it will
introduce new inconsistencies. Specifically, changing
the sign of the type II CLVD will break the preorder-
ing and assign the type II CLVD to the type I case.
It is common in both families that a quick fix will
simply introduce new inconsistencies of some kind.
Mathematically speaking, this equality inconsistency
is deeply associated with the fact that (1) the stan-
dard methods use nonorthogonal bases and (2) two out
of three components are not the projection along its
bases.

1.3 Euclidean moment tensor decomposition

Here, we summarize the Euclidean moment ten-
sor decomposition method. Roughly speaking, any
decomposition that has a lune shape scale plot with the
ISO direction longer than the CLVD direction likely
belongs to this family. We choose to use one plain
setup adapted from Vavryc̆uk (2015) to represent the
entire family. Again, the choice of this specific setup
is done without loss of generality.

Starting with preordered eigenvalues M∗
1 , M

∗
2 , and

M∗
3 , the basis vectors are

EE
ISO =

√
2

3

⎡
⎢⎣
1

1

1

⎤
⎥⎦ , EE

DC =
⎡
⎢⎣
1

0

−1

⎤
⎥⎦ , EE

CLV D = 1√
3

⎡
⎢⎣
1

−2

1

⎤
⎥⎦ ,

(16)

and the three decomposition components can be
expressed as a series of projections along the basis
vectors,

ME
ISO = 1√

6
(M∗

1 + M∗
2 + M∗

3 ) = 1

2
M∗ · EE

ISO, (17)

ME
CLV D = 1

2
√
3
(M∗

1 + M∗
3 − 2M∗

2 ) = 1

2
M∗ · EE

CLV D, (18)

ME
DC = 1

2
(M∗

1 − M∗
3 ) = 1

2
M∗ · EE

DC. (19)

Note that there is a sign flip in the CLVD basis vector.
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The scalar moment is defined as

ME
0 =

√
(M∗

1 )2 + (M∗
2 )2 + (M∗

3 )2

2

=
√

(ME
ISO)2 + (ME

CLV D)2 + (ME
DC)2, (20)

where the Euclidean definition of the scalar moment
follows the notation of a previous study (Silver and
Jordan 1982), and the extra 1/2 follows the notation
from Aki and Richards (2002) to normalize pure DC
to 1. In addition, the three scale factors are defined as

CE
ISO = ME

ISO

ME
0

, CE
DC = ME

DC

ME
0

, CE
CLV D = ME

CLV D

ME
0

.

(21)

Moreover, the unity equation of the three scale factors
becomes quadratic,

(CE
ISO)2 + (CE

DC)2 + (CE
CLV D)2 = 1 (22)

1.4 The pure CLVD unity and flip basis inconsistency
in Euclidean moment tensor decomposition

The pure CLVD unity and basis choice inconsistency
in Euclidean moment tensor decomposition occurs in
the pure CLVD case. Applying Euclidean decomposi-
tion to a pure CLVD ordered eigenvalue vector M∗ =
(1, −1/2, −1/2)T will give the following:

⎡
⎢⎢⎣

1

−1/2

−1/2

⎤
⎥⎥⎦ = 3

4

⎡
⎢⎢⎣

1

0

−1

⎤
⎥⎥⎦+ 1

4

⎡
⎢⎢⎣

1

−2

1

⎤
⎥⎥⎦ = ME

DCEE
DC+ME

CLVDEE
CLVD.

(23)

Although the Euclidean decomposition equation is
exact and free from equality inconsistencies, such as
Eq. 15, there are some other minor inconsistencies.
(1) The unity problem: Because the input eigenvalue
vector is a pure CLVD, the coefficient of the CLVD
should be one instead of 1/4. (2) The flip basis prob-
lem: There is an inconsistency between the input vec-
tor, which has a positive major element, and the cor-
responding basis, which has a negative major element,
(1, −2, 1)T . One may naively think this inconsistency
can be solved using the correct CLVD basis vector.
Again, this will work, but it will inevitably introduce a

new inconsistency. Without the flip basis, the decom-
position sign of a pure CLVD (1, −1/2, −1/2)T will
be wrong. Apparently, an artificial flip of the sign
of the CLVD basis EE

CLVD is essential to achieve the
correct sign of the CLVD coefficient.

Furthermore, running the above pure CLVD exam-
ple in the standard method will give us a reasonable
answer,
⎡
⎢⎢⎣
1

−1/2

−1/2

⎤
⎥⎥⎦ = 1

⎡
⎢⎢⎣
1

−1/2

−1/2

⎤
⎥⎥⎦ = MS

CLVDES
CLVD. (24)

To summarize, we have demonstrated the incon-
sistencies in the two families of methods via two
examples. The standard family appears to have equal-
ity inconsistency in the type II cases. The Euclidean
family appears to have pure CLVD unity inconsistency
and flip basis inconsistency.

1.5 In search of an overall consistent decomposition
method

Although minor inconsistencies exist in both families
of methods, one may still argue that these inconsis-
tencies are trivial and can be addressed by simply
reinterpreting the results. For example, in the stan-
dard method, one can ignore the equality issue and use
only the coefficient MS

CLVD. In the Euclidean method,
one can reinterpret the ME

CLVD = 1/4 as the pure
CLVD. For the flip basis problem, one can either flip
the signs of the positive CLVD and negative CLVD
in the scale plot (Chapman and Leaney 2012) or sim-
ply flip the sign of the CLVD basis (Tape and Tape
2012a) to address those inconsistencies. We argue the
opposite. First, these minor inconsistencies existing
at the framework level do not mean that they are not
real. These inconsistencies indicate that there is seri-
ous tension between the results of the two families of
methods and reasonable outcomes. A reconciliation is
needed. Second, using the proposed new method, we
can obtain insight into previous methods from a dif-
ferent, sometimes higher perspective. We could even
examine the current methods in a more generalized
fashion to evaluate how good the current methods
work. Third, by requiring consistency, the resultant
method may sometimes gain unexpected advantages
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over the old methods in regions outside the incon-
sistencies. After knowing all the inconsistencies of
the previous methods, one may ask if it is possible
to attain an overall consistent method, a method that
avoids all the inconsistencies without producing any
new inconsistencies, a method that can also maintain
most of the good features in the existing methods.

In this paper, we prove that it is indeed possi-
ble to achieve that. The proof is done by designing
a new decomposition method that solves all of the
inconsistencies as an example. We propose such a
method, called generalized orthonormal moment ten-
sor decomposition (GOMTD). GOMTD inherits the
orthogonality feature from the Euclidean family while
possessing correct pure CLVD coefficients from the
standard family of methods. The key insight in build-
ing GOMTD comes from the observation that the
eigenvalue preordering process is the source of all
the troubles, and it will suppress some orientational
information in the moment tensors. A pure CLVD
with its positive direction oriented toward the north
is very different from a pure CLVD with its posi-
tive direction oriented to the east. However, after the
eigenvalue preordering process, the two CLVDs will
become indistinguishable. In GOMTD, we replace
the eigenvalue preordering process with three sets of
generalized bases and a selection rule. In doing so,
GOMTD calculates coefficients from all orientations
and keeps track of the orientation information.

Our contributions are as follows:

– We develop GOMTD and document its calcula-
tion procedure (Section 2).

– We demonstrate how GOMTD can successfully
handle all of the abovementioned inconsistencies
(Section 3.1).

– We explored some behaviors of GOMTD through
scale factor plot comparison with previous meth-
ods (Sections 3.2, 3.3, 3.4 and 3.5).

– We discuss the behavior of GOMTD and other
methods under a fixed-scale factor ratio case
(Section 3.7).

– We discuss the role GOMTD can play in the usage
of CLVD scale factors and in the usage of an
orientation index (Sections 3.6 and 3.9).

– We show how to extend GOMTD and discuss the
limitations of GOMTD (Sections 3.11 and 3.12).

2 Generalized orthonormal moment tensor
decomposition

Figure 1 summarizes the entire GOMTD algorithm.
We start with a 3-by-3 moment tensor matrix M.

2.1 Diagonalization

The first step is to diagonalize the moment tensor
matrix. In GOMTD, we do not need to preorder
the three eigenvalues. Instead, we directly use the
unordered eigenvalues in vector form, that is,

M =

⎡
⎢⎢⎣

M1

M2

M3

⎤
⎥⎥⎦ , (25)

which will be called an eigenvalue vector hereinafter.

2.2 Calculating three sets of coefficients

Three orthonormal bases exist with which to decom-
pose the eigenvalue vector into three fundamental
components, namely, the ISO component, the DC
component, and the CLVD component. The first
orthonormal basis is

Ê
(1)
ISO = 1√

3

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ , Ê

(1)
DC = 1√

2

⎡
⎢⎢⎣

0

1

−1

⎤
⎥⎥⎦ , Ê

(1)
CLVD = 1√

6

⎡
⎢⎢⎣

2

−1

−1

⎤
⎥⎥⎦ .

(26)

The second orthonormal basis is

Ê
(2)
ISO = 1√

3

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ , Ê

(2)
DC = 1√

2

⎡
⎢⎢⎣

1

0

−1

⎤
⎥⎥⎦ , Ê

(2)
CLVD = 1√

6

⎡
⎢⎢⎣

−1

2

−1

⎤
⎥⎥⎦ .

(27)

Finally, the third orthonormal basis is

Ê
(3)
ISO = 1√

3

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ , Ê

(3)
DC = 1√

2

⎡
⎢⎢⎣

1

−1

0

⎤
⎥⎥⎦ , Ê

(3)
CLVD = 1√

6

⎡
⎢⎢⎣

−1

−1

2

⎤
⎥⎥⎦ .

(28)
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Fig. 1 Flowchart of the proposed moment decomposition method

The coefficients are simply projections along these
bases. For example, the coefficients of the first basis
are

M
(1)
ISO = M · Ê(1)

ISO,

= 1√
3
(M1 + M2 + M3), (29)

M
(1)
DC = M · Ê(1)

DC,

= 1√
2
(M2 − M3), (30)

M
(1)
CLVD = M · Ê

(1)
CLVD,

= 1√
6
(2M1 − M2 − M3). (31)

Similar calculations can be carried out for the second
and third bases.

2.3 Determining which set to use

Once all three sets of coefficients are available,
GOMTD will decide which set to use. First, we
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observe that the ISO coefficients are the same for all
three bases, that is, M

(1)
ISO = M

(2)
ISO = M

(3)
ISO. Because

the ISO coefficients are independent of the chosen
basis, we do not need to include them within the selec-
tion rules. Consequently, we have six coefficients, two
for each basis. To account for the pure CLVD unity
problem, we design the GOMTD selection rules to
find the basis containing the six coefficients with the
largest amplitudes,

argmax
n

{
|M(n)

DC|, |M(n)
CLVD|

}
, (32)

where the support is n = {1, 2, 3}. After the selection
rule, there will be two types of output. One is the index
of the bases used in the algorithm, which corresponds
to the spatial orientation of the moment tensor. The
other contains the coefficients of the given basis. They
are similar to the Euclidean type coefficients except
for the areas with inconsistencies.

2.4 Three output scale factors

Once the basis to use is determined, the correspond-
ing coefficients are calculated. GOMTD will then
determine the scalar moment and calculate the scale
factors. The chosen coefficients are now MISO, MDC,
and MCLVD. Note that the basis indicators have been
suppressed in the equation for simplicity. The scalar
moment is defined as

M0 =
√

M2
1 + M2

2 + M3
2 =

√
M2

ISO + M2
DC + M3

CLVD.

(33)

The three scale factors are expressed as

CISO = MISO

M0
, CDC = MDC

M0
, CCLVD = MCLVD

M0
,

(34)

where

M = MISOÊISO + MDCÊDC + MCLVDÊCLVD,

= M0(CISOÊISO + CDCÊDC + CCLVDÊCLVD). (35)

Note that although the above expression is very
similar to the expressions of the standard method and
the Euclidean method, the meaning is quite different.
GOMTD, which contains an orientation index, can
restore the original eigenvalue vectors (M), while the

other two methods can only restore the ordered eigen-
value vectors. Moreover, these methods exhibit some
orientation loss. Additionally, note that the above
decomposition can be written in diagonal matrix
form. When using the spectral decomposition theo-
rem, those diagonal matrices can be restored into a
matrix form that decomposes the raw moment ten-
sor. The pure DC moment tensor in matrix form can
give the P, T, and N axes. The calculation of restora-
tion to matrix form is more natural in GOMTD and
reflects the advantage of not suppressing orientational
information.

Figure 2 shows the source-type diagram of
GOMTD. It is visualized by the scale factor plot of
CISO and CCLV D , both derived from the proposed
method. In the scale factor plot, the possible values of
the ISO and CLVD scale factors are between -1 and
1 rather than following the shape of a diamond as in
the standard method or the shape of a lune as in the
Euclidean method. Later, the permitted region of scale
factors will be shown to consist of a lune and a circular
boundary.

3 Discussion

3.1 GOMTD can handle the inconsistencies

As an example, we demonstrate that GOMTD can
correctly handle the two minor inconsistencies pre-
sented in the introduction section. First, we reconsider
the case of a pure CLVD, (1/2, 1/2, −1)T , as an
illustration of the equality inconsistency. Using the
proposed method, the six corresponding coefficients
are as follows:

M
(1)
DC = 1.061, M

(1)
CLVD = 0.612

M
(2)
DC = 1.061, M

(2)
CLVD = 0.612

M
(3)
DC = 0, M

(3)
CLVD = −1.225. (36)

The coefficient with the largest amplitude is M
(3)
CLVD.

Therefore, the chosen basis is 3. The proposed decom-
position is expressed as

⎡
⎢⎢⎣
1/2

1/2

−1

⎤
⎥⎥⎦ = −3√

6

⎡
⎢⎢⎣

−1/
√
6

−1/
√
6

2/
√
6

⎤
⎥⎥⎦ = M

(3)
CLVDÊ

(3)
CLVD. (37)
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Fig. 2 CCLVD − CISO circular plot of the proposed moment decomposition method. The shading intensity corresponds to the scale
factor of the DC component

Moreover, the corresponding scale factor is

CCLVD = M
(3)
CLVD

M0
=

−3√
6√
3/2

= −1 (38)

Note that both the scale factor and the sign of the
eigenbasis have the correct signs now. Therefore, the
proposed method can handle the equality inconsis-
tency in the standard method.

Next, we look into the case of the pure CLVD,
(1, −1/2, −1/2)T , as an illustration of the pure CLVD
unity inconsistency. In this case, in which a basis of 1
is chosen for the proposed method, the decomposition
of the proposed method is expressed as follows:
⎡
⎢⎢⎣
1

−1/2

−1/2

⎤
⎥⎥⎦ = 3√

6

⎡
⎢⎢⎣
2/

√
6

−1/
√
6

−1/
√
6

⎤
⎥⎥⎦=M

(1)
CLVDÊ

(1)
CLVD. (39)

The only nonzero scale factor is

CCLVD = M
(1)
CLVD

M0
=

3√
6√
3/2

= 1 (40)

Therefore, the unity of the pure CLVD scale factor is
preserved. Moreover, there is no flip sign eigenbasis
inconsistency in GOMTD, as the sign of the eigen-
basis basis Ê

(1)
CLVD ∝ (2, −1, −1)T is in accordance

with the input eigenvalue vector. In GOMTD, there is
no need to impose an artificial sign flip on the CLVD
basis or flip the scale plot. Everything follows through
naturally.

3.2 Scale factor plots for random moment tensors

We wish to demonstrate the distribution of GOMTD.
Figure 3 shows a scale factor CCLVD − CISO plot
comparison of GOMTD, the standard method, and
the Euclidean method using 5000 data points from a
randomly generated eigenvalue vector, that is,
⎡
⎢⎢⎣
Uniform(−1.0, 1.0)

Uniform(−1.0, 1.0)

Uniform(−1.0, 1.0)

⎤
⎥⎥⎦ . (41)

The scale factor plot shows that GOMTD has a lune
distribution and a circular boundary. It attracts data
points along the circumference of the circular bound-
ary, whereas the standard method and the Euclidean
method show a somewhat uniform distribution and
follow their own permitted region, which is diamond
shaped for the standard method and lune shaped for
the Euclidean method. A lengthy discussion of the
probability densities of the two previously developed
methods can be found in previous studies (Chapman
2019; Tape and Tape 2012b).

3.3 Scale factor plots when the moment tensor
surrounds a pure ISO vector

Figure 4 shows a scale factor CCLVD −CISO plot com-
parison of GOMTD, the standard method, and the
Euclidean method using 5000 data points from the
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Fig. 3 Scale factorCCLVD−CISO plots of simulations of randommoment tensors. a Standard method. b Euclidean method. c Proposed
method

generated eigenvalue vector around a pure ISO vector
with some random noise, that is,

⎡
⎢⎢⎣
1 + Uniform(−0.25, 0.25)

1 + Uniform(−0.25, 0.25)

1 + Uniform(−0.25, 0.25)

⎤
⎥⎥⎦ . (42)

The results show that GOMTD attracts pure ISO vec-
tors with some deviation toward the pure ISO poles.
A similar situation also happens with the Euclidean
method but with less concentration around the circum-
ference. Both the proposed method and the Euclidean
method outperform the standard method in this case.
Note that the choice of (1, 1, 1) is without loss of
generality.

3.4 Scale factor plots when the moment tensor
surrounds a pure DC vector

Figure 5 shows a scale factor CCLVD − CISO plot
comparison of GOMTD, the standard method, and
the Euclidean method using 5000 data points from
the generated eigenvalue vector around one pure DC
vector with some random noise, that is,

⎡
⎢⎢⎣
1 + Uniform(−0.25, 0.25)

0 + Uniform(−0.25, 0.25)

−1 + Uniform(−0.25, 0.25)

⎤
⎥⎥⎦ . (43)

The results show that GOMTD, along with the
Euclidean method, has a smaller deviation than the
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Fig. 4 Scale factor CCLVD − CISO plots of simulations of random moment tensors around a pure ISO mechanical type. a Standard
method. b Euclidean method. c Proposed method

standard method. A similar result will prevail when
the pure DC eigenvalue vector is along another ori-
entation, say (0, 1, −1). However, there are some
outlier points located near the boundary of the cir-
cle for the proposed method. Further examination
reveals that these points are essentially ambiguous
between the DC and CLVD components. For exam-
ple, one of the points located around the left boundary
isM = (−1.149, 0.247, 0.757), which will be consid-
ered a CLVD component, that is, −(2, −1, −1), in the
proposed method.

Another important point we can observe is the mir-
ror symmetry between GOMTD and the Euclidean

method. There is almost a one-to-one correspondence
between the points of the two methods, only off by
the sign of the CLVD. The mirror symmetry can be
explained by the CLVD basis sign flip in the Euclidean
method. The CLVD basis of the two methods is off by
a minus sign.

Examining all of the simulated data points, we
can further observe that there is an extra minus sign
problem in the standard method as well. This is due to
the preordering process and will eventually be restored
to the correct sign when the CLVD factor becomes
large enough to trigger an order flip in the preordering
process.
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Fig. 5 Scale factor CCLVD − CISO plots of simulations of random moment tensors around a pure DC mechanical type. a Standard
method. b Euclidean method. c Proposed method

To summarize the above, there is a sign prob-
lem when the CLVD is disentangled from the DC-
dominated case. To illustrate the problem, we consider
a pure DC with some small positive CLVD,

1√
2

[
1
0
−1

]
+ 0.1

1√
6

[ −1
2
−1

]
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ISO, DC, CLVD)

the proposed method,

(0.0, 0.995, 0.10);
the standard method,

(0.0, 0.782,−0.22);
the Euclidean method,

(0.0, 0.995,−0.10).

(44)

Note that only GOMTD will disentangle obtaining a
correct sign of the CLVD scale factor (+0.10). The
other two methods will disentangle negative CLVD
scale factors (−0.22, −0.10) until the eigenvalue vec-
tor becomes a CLVD-dominated case, which will
induce a flip in the preordering process.

3.5 Scale factor plots when the moment tensor
surrounds a pure CLVD vector

Figure 6 shows a scale factor CCLVD − CISO plot
comparison of GOMTD, the standard method, and
the Euclidean method using 5000 data points from
the generated eigenvalue vector around a pure CLVD
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vector with some random noise, that is,
⎡
⎢⎢⎣
2 + Uniform(−0.25, 0.25)

−1 + Uniform(−0.25, 0.25)

−1 + Uniform(−0.25, 0.25)

⎤
⎥⎥⎦ . (45)

The results show that GOMTD attracts data points
around the CLVD toward the CLVD poles. GOMTD
outperforms both the standard method and the
Euclidean method in this case. A similar result will
prevail when the pure CLVD eigenvalue vector is
along another orientation, e.g., (−1, 2, −1). Such a
unique denoising feature can further stabilize the
resulting CLVD scale factors under some noise pertur-
bation.

3.6 The issue of the CLVD scale factor

In several previous studies (Vavryc̆uk and Hrubcová
2017; Kagan 2003), researchers examined various
seismic data and claimed that the CLVD compo-
nents were not very accurate. Moreover, the authors
of a recent study (Yu et al. 2018) claimed that the
CLVD scale factor (i.e., the percentage) is not a good
statistical quantity due to its sensitivity to noise.

Regarding the issue of the CLVD, we believe that
GOMTD can be helpful. First, GOMTD is free from
the sign problem around the DC, and it will not add
more burden to the already inaccurate CLVD data.
Second, GOMTD has a unique denoising feature,
meaning that it is possible to stabilize noisy CLVD
data.

3.7 Scale factor plots when the ratio of CISO/CCLV D

is fixed

Vavryc̆uk (2001) suggested that for pure tensile and
shear-tensile sources, the ISO/CLVD ratio depends
solely on VP /VS . We compare the scale factor plots
when the ratio of CISO/CCLV D is fixed. The test
eigenvalue vector is as follows:

ES
ISO + 2ES

CLV D + CES
DC, (46)

where C is a constant that controls the weight of the
DC component. We examine two cases: a large C case
and a small C case. Figure 7 shows the scale factor
plots when C is large. One can notice that GOMTD
shows a straight line with some circular components
but opposite in slope with the Euclidean method. It is

understandable because there is a base flip between
the two. GOMTD does not possess a good linear
relation in the large C case, as with the previous meth-
ods. Figure 8 shows the scale factor plots when C

is small. In this case, both the standard method and
the Euclidean method feature a straight line. GOMTD
shows an area of points around the outer circle. This is
due to the pole attraction effect. Although it seems that
the standard method can best reconstruct the linear
relation from Eq. 46, we doubt the validity of adding
three bases that are not orthogonal to each other. Note
that a similar linear relation construct by orthogo-
nal bases, either the Euclidean method or GOMTD,
will result in a messy reconstruction for all three
methods.

3.8 Scale factor plots of Geyser geothermal events

Figure 9 depicts a scale factor plot comparison among
GOMTD, the standard method, and the Euclidean
method using 53 focal mechanisms located at the
Geysers Geothermal Field, California. The detailed
focal mechanism dataset can be found in Table 2
of Boyd et al. (2015). Figure 9(a) reproduces the
results of Figure 2(a) of Boyd et al. (2015). Over-
all, all three methods present similar results, but
GOMTD automatically separates the events into three
groups, one dominated by DC events, one dom-
inated by positive CLVD events, and one dom-
inated by negative CLVD events. These findings
demonstrate that GOMTD is suitable for cluster anal-
ysis. In this dataset, the CLVD-dominated groups
appear in the standard method and Euclidean method
plots, albeit not as prominently as in the GOMTD
plot.

3.9 Orientation index of the Orthonormal bases

In the middle of the moment tensor decomposition
algorithm of the proposed method, we decide which
set of orthonormal bases to use, namely, Ê(1), Ê(2),
or Ê(3). The chosen index of orthonormal bases for
each seismic event can provide additional orientation
information that would otherwise be suppressed by
the eigenvalue preordering process. In practice, one
can identify the dominant orthonormal basis of one
area and associate it with the geological setting. In
addition, one can easily classify seismic events into
different groups by their indices of bases.
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Fig. 6 Scale factor CCLVD − CISO plots of simulations of random moment tensors around a pure CLVD mechanical type. a Standard
method. b Euclidean method. c Proposed method

3.10 Order of growth analysis of the GOMTD
algorithm

We examine the order of growth of our proposed
algorithm following the notation from Cormen et al.
(2009). Considering that the inputs are n sets of focal
mechanisms, the worst running time of the proposed
method is �(n). That is, the running time grows in
proportion with the number of input events. Similar
analysis shows that the running times for the standard
method and the Euclidean method are also �(n).
That is, the speed of the proposed method is on par
with those of the standard method and the Euclidean

method, although the proposed method contains more
instructions.

3.11 GOMTD extension and its connection to the
Euclidean method

We can extend the concept of selection rules by
including artificial weights to adapt to the geological
setting of the research area. The extension selection
rule is as follows:

argmax
n

{
|w(n)

DCM
(n)
DC|, |w(n)

CLVDM
(n)
CLVD|

}
, (47)
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Fig. 7 Scale factor CCLVD − CISO plots of simulations of a fixed-scale factor ratio with a large DC component. a Standard method. b
Euclidean method. c Proposed method

where the w terms represent different weights. When
w

(2)
DC = w

(2)
CLVD = 1 and the rest of the weights

are set to zero, the moment tensor decomposition will
be restored to the original Euclidean decomposition
method (off by the minus sign in the CLVD basis, of
course). The weights are important tools to allow the
user to describe the possible orientation of the research
area. For example, one can increase the weight of
index 1 when the average moment tensor decomposi-
tions prefer the orientation of index 1. Alternatively,
one could decrease the weight of index 2 when his-
torical data show are less likely to exhibit such an
orientation.

3.12 Ambiguities and limitations

Ambiguities usually arise when the dominant coeffi-
cients in two different bases are the same or nearly
identical. It is also the cause of the transition area
between the circular boundary and the lune in the
GOMTD scale factor graph. It is true that the other
methods do not have such transition area features.
Although the transition area can be daunting at first,
we believe it is actually not an unwanted feature. That
is, the ambiguities are intrinsic (regardless of meth-
ods), and we believe it is better to show explicitly
than sweep it under the rug. In practice, choosing a
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Fig. 8 Scale factor CCLVD − CISO plots of simulations of a fixed-scale factor ratio with a small DC component. a Standard method.
b Euclidean method. c Proposed method

dominant basis by giving more weights in one area
beforehand can significantly reduce these ambiguities.

4 Conclusions

This project starts with the observations of inconsis-
tencies hidden in the current moment tensor decom-
position methods, and all quick fixes introduce new
inconsistencies. We demonstrate that it is possible
to have a decomposition method free from those
inconsistencies. We propose one such method called
GOMTD, an overall consistent method that not
only preserves the orthogonality of the bases but

also addresses the inconsistencies of previous meth-
ods. Moreover, GOMTD can correctly disentangle
the CLVD from the DC-dominated case. Further-
more, GOMTD tends to denoise the perturbation for
ISO- and DC-dominated cases. In theoretical aspects,
GOMTD is a reasonable alternative framework for
moment tensor decomposition, and it can lead the
way to inspire new methods. In practice, we believe
that GOMTD will also be a helpful tool. The denois-
ing feature, CLVD disentanglement ability, orientation
index, and freedom to assign weights of GOMTD will
be useful for future data-driven investigations, cluster
analyses, and explorations, especially for extracting
non-DC components.
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