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We systematically investigate the spatiotemporal water storage changes in Taiwan using geodetic 
(GNSS and GRACE) and hydrological (precipitation, GLDAS and LSDM assimilation models, and in-
situ groundwater level) datasets. We use GNSS-observed vertical deformation to estimate water 
storage changes based on elastic loading theory and weighted least-squares inversion, correcting for 
contributions from global loads using GRACE. The mean annual water-thickness change inferred from 
GNSS across Taiwan is 0.53 ± 0.17 m and the largest seasonal change of up to 0.91 m is estimated in 
southwest Taiwan. Comparison of the geodetic and hydrological data shows that the spatial pattern 
of annual water storage change estimated from GNSS, GLDAS, and precipitation data are generally 
consistent, indicating significant seasonal water-load fluctuations in Taiwan. However, the GRACE solution 
significantly underestimates the amplitude of water mass change in Taiwan due to leakage effect, but 
temporally correlates well with GNSS estimates. Hydrological assimilation model GLDAS, dominated 
by shallow soil moisture variations, predicts that the average seasonal variation of water thickness is 
only about 17% of GNSS estimates. This value is about half of the mean annual LSDM water storage 
change of 0.18 m including an estimate of both soil moisture and surface water. The discrepancy 
suggests that the contribution of groundwater is substantial and the total water storage change in 
the hydrological assimilation model is underestimated in Taiwan. The spatiotemporal distributions 
derived using independent component analysis (ICA) are generally consistent between the geodetic and 
hydrological data. However, comparisons of seasonal amplitudes and phases between all data pairs reveal 
different response times to precipitation, reflecting the complex nature of transient water storage due to 
variable rainfall patterns, infiltration rate, soil saturation, and runoff. The peak rainfall occurs in June-July, 
which is one-to-two months before the peak GNSS subsidence. Water storage of the GLDAS model also 
reaches its maximum in August, suggesting the water storage is controlled by the infiltration rate and 
capacity and the total water recharge from rainfall is generally larger than discharge in the summer. The 
highest groundwater levels lag one and two months behind the peak GNSS subsidence in western and 
eastern Taiwan, respectively, indicating a higher infiltration rate in western Taiwan.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Water resource is an important issue in Taiwan due to the steep 
topography and uneven temporal and spatial distribution of rain-
fall (Fig. 1). The mean annual precipitation in 2005-2016 is about 
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2580 mm, estimated from the total rainfall over Taiwan divided 
by area, and only 10%-40% of rainfall contributes to recharge of 
groundwater (e.g., Lee et al., 2006; Ting et al., 1998). About 70% 
of rainfall occurs in summer, during monsoon and typhoon season, 
in contrast to limited rainfall in winter (Fig. 1). Quantifying water 
storage variability in Taiwan is therefore critical for water resource 
management. Satellite-based geodetic techniques have proven to 
be a useful tool not only for measuring crustal deformation and 
studying plate tectonics, but also for investigating seasonal and 

https://doi.org/10.1016/j.epsl.2020.116532
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/epsl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsl.2020.116532&domain=pdf
mailto:yaru@earth.sinica.edu.tw
https://doi.org/10.1016/j.epsl.2020.116532


2 Y.-J. Hsu et al. / Earth and Planetary Science Letters 550 (2020) 116532

Fig. 1. Mean precipitation in the wet (May to October) and dry (November to April) seasons from 2005 to 2016 and distribution of GNSS stations and groundwater level sites. 
(a) Average total rainfall in the wet season is color coded with a contour interval of 1000 mm. White dots indicate the stations of the Automatic Rainfall and Meteorological 
Telemetry System. (b) Mean total rainfall in the dry season is color coded with 500 mm contour interval. Circles and triangles show locations of groundwater monitoring 
well stations and GNSS sites in Taiwan. Black star indicates the epicenter of the 2010 Mw 6.4 Jiashian earthquake.
multi-year water storage changes. For example, the Gravity Re-
covery and Climate Experience (GRACE) mission tracks terrestrial 
water storage changes by observing the Earth’s time-variable grav-
ity variations at ∼350 km spatial scale (e.g., Tapley et al., 2004; 
Wahr et al., 2004). Recent progress has been made to infer the wa-
ter mass changes in the western United States using elastic loading 
deformation measured from the dense Global Navigation Satellite 
System (GNSS) network (e.g., Argus et al., 2014, 2017; Borsa et al., 
2014; Enzminger et al., 2018; Fu et al., 2015; Johnson et al., 2017). 
The GNSS results provide water storage change at a refined spa-
tial resolution (several tens of km) than GRACE. In Taiwan, GNSS 
observations were mostly used for tectonic studies (e.g. Hsu et al., 
2009; Yu et al., 1997), and the GNSS-observed vertical deformation 
shows significant annual and inter-annual variations related to sur-
face water loading effect. But the GNSS measurements in Taiwan 
have not been systematically analyzed for hydrological applications 
previously.

The spatial coverage of the continuous GNSS network in Tai-
wan is dense enough (Fig. 1b) to resolve spatio-temporal water 
mass changes. GNSS-derived estimates of water mass variations 
and comparisons with rainfall, groundwater, and hydrological mod-
els are very useful for improving the characterization of water 
storage and transport processes. To validate GNSS inferred sea-
sonal water storage changes and to better understand how water is 
transferred from the Earth’s surface to aquifers, we compare both 
amplitudes and phases of monthly precipitation, groundwater lev-
els, vertical GNSS displacements, GRACE derived gravity change, 
and water storage change estimated from hydrological assimilation 
models. The integration of data sets covering different temporal 
and spatial scales provides critical insights into the hydrological 
factors that influence surface water transport and redistribution. 
The comparison of different datasets also allows us to evaluate the 
pros and cons of each approach for estimating water storage vari-
ation. As demonstrated later in this paper, the results of our study 
can only be applied to the regions dominated by elastic loading 
from water storage changes and do not apply to traditional aquifer 
systems dominated by alluvial or compressible sediments.

2. Data

2.1. Precipitation

Rainfall data with 1-hr sampling rate are provided by the Auto-
matic Rainfall and Meteorological Telemetry System (ARMTS) op-
erated by the Central Weather Bureau (CWB), Taiwan. The ARMTS 
network is composed of more than 750 stations (Chen and Huang, 
1999) and data from 562 stations are used to study rainfall char-
acteristics in Taiwan from 2005 to 2016 (Fig. 1a). The annual pre-
cipitation of Taiwan ranges from 2000 to 4000 mm, with about 
70% occurring from May to September during the monsoon and 
typhoon season (e.g., Chen and Chen, 2003; Chen et al., 2007). The 
temporal and spatial distribution of precipitation is extremely un-
even in Taiwan. To study seasonality of precipitation, we define 
the time periods from May to October as the wet season and from 
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November to April as the dry season. We also define the “hydro-
logical year” as the 12-month period starting from May 1st for any 
given year to April 30th of the following year to study the annual 
water cycle. Monthly averaged precipitation data are used for com-
parisons with other data sets.

2.2. Groundwater level

Groundwater is primarily contained in aquifers or porous un-
derground formations and is an important water resource in Tai-
wan. The installation of a groundwater monitoring network in Tai-
wan started in 1991 with the primary goal of collecting data for 
groundwater-resources planning and management. The network is 
operated by the Water Resources Agency (WRA), Ministry of Eco-
nomic Affairs (2002) and composed of about 350 stations mostly 
located in western Taiwan (Hsu, 1998). Each station consists of 1-
5 wells to collect the groundwater level data with 1-hr sampling 
rate from aquifers at different depths. To study groundwater stora-
tivity (i.e., the volume of water taken into or released from storage 
per unit change in water level), we prefer to use deep wells lo-
cated in the confined aquifer. However, this task is hampered by 
frequently missing data at deeper wells. Therefore, we only use 
groundwater levels at the shallowest wells at each station because 
of the completeness of the observations. While the seasonal am-
plitudes for wells at different depths vary from 10 m to 20 m, 
their spatial patterns remain similar (Fig. S1). The time of peak 
groundwater level (phase) at deep wells is about 15-45 days be-
hind that in the shallow wells (Figs. S1 and S2). We choose 162 
stations with continuous records in 2005-2016 (Fig. 1b) and use a 
least-squares regression with a long-term linear trend and annual 
terms to extract the amplitude and phase of seasonal groundwa-
ter level change. To obtain consistent time series comparable with 
other data sets, monthly averages are used for comparisons.

2.3. GNSS

The Taiwan continuous GNSS array was constructed by the In-
stitute of Earth Sciences (IESAS) since 1990. The network is now 
composed of more than 400 stations (Fig. 1b) and operated by 
the Central Weather Bureau (CWB), IESAS, the Central Geological 
Survey (CGS), and the Ministry of the Interior (MOI). We pro-
cess local and global continuous GNSS data from 2005 to 2016 
with the GAMIT/GLOBK software packages (Herring et al., 2002) 
and produce a combined daily solution in the ITRF2008 reference 
frame (Altamimi et al., 2011). We aim to study water storage vari-
ation in Taiwan and remove vertical motions associated with the 
atmospheric, non-tidal ocean, and global hydrological loads from 
the GNSS time series. The first two corrections use the products 
from GFZ (http://rz -vm115 .gfz -potsdam .de :8080 /repository) (Dill 
and Dobslaw, 2013). The loading deformation contributed from all 
other places on the Earth outside Taiwan is estimated using JPL’s 
global GRACE mascon solution (Watkins et al., 2015) excluding 
grids over Taiwan. This solution includes degree-1 loading defor-
mation estimated using the spherical harmonic coefficients derived 
from a combination of GRACE data and geophysical models (Sun 
et al., 2016). The amplitudes of seasonal motions calculated from 
these three effects are less than 3 mm (Fig. S3). A least-squares 
regression is adopted to fit GNSS daily three-dimensional posi-
tion time series with a linear trend, annual and semi-annual pe-
riodic motions, offsets caused by coseismic jumps and instrument 
changes, and exponential postseismic relaxation following moder-
ate to large earthquakes (Table S1). We only use the vertical data 
and do not consider the horizontal seasonal motions (Text S1). Es-
timates of common-mode errors (Dong et al., 2006), the long-term 
linear trend, coseismic and instrumental offsets, and postseismic 
relaxation are removed from the raw data (Hsu et al., 2018). We 
use the residual GNSS time series to estimate the amplitude and 
phase of GNSS annual vertical motions.

The majority of continuous GNSS stations (about 95% of 207 
stations shown as circles in Figs. 2a, b) in Taiwan reach their 
lowest height in autumn (late August-September) when surface 
water storage is at an annual maximum, and attain peak annual 
uplift in spring (late February to March) during the time of min-
imum surface water storage. This seasonal cycle of GNSS height 
series corresponds to the physical loading and unloading effects 
due to the seasonality of water mass change (Fig. 2). In contrast, 11 
GNSS sites located in the alluvial plains show seasonal vertical mo-
tions that are in phase with groundwater level change (squares in 
Figs. 2a and 2b), suggesting a dominant poroelastic mechanism in 
alluvial plains (e.g., Chaussard et al., 2014). As we are interested in 
the elastic loading effects, we remove GNSS sites located on allu-
vial fans and Quaternary basins (Text S2), stations greatly affected 
by multipath effects based on sky visibility in different years and 
field photos (Fig. S6), and stations affected by fault creep (Lee et al., 
2003) and deep-seated landslides (Hsu et al., 2014). The remaining 
176 stations are used to infer the changes of water storage in Tai-
wan.

2.4. Terrestrial water change from hydrological models

We use the Global Land Data Assimilation System (GLDAS: 
https://hydro1.gesdisc .eosdis .nasa .gov /data /GLDAS/) Noah model
(GLDAS-Noah2.0) and Land Surface Discharge Model (LSDM) mod-
els in this study. The former relies on combinations of multiple 
land-surface models and meteorological-forcing data sets, integrat-
ing the effects of precipitation, solar radiation, air temperature, 
and other meteorological factors (Rodell et al., 2004). The GLDAS 
hydrological model provides soil moisture estimates from the sur-
face to a depth of 2 m, snow water equivalent, and a canopy water 
component, at 0.25◦ grid spacing and one-month temporal sam-
pling. We combine the sum of these components as the GLDAS 
water variations. Note that the contributions of canopy and snow 
water to GLDAS are very small in Taiwan with about 99% of water 
variations being from soil moisture (Fig. S7). The second model 
we consider is the LSDM (Dill, 2008; Dill and Dobslaw, 2013), 
which simulates global water storage and transport in continen-
tal regions based on a combination of the Hydrological Discharge 
Model (HDM) and the Simplified Land Surface (SLS) scheme (Hage-
mann and Dümenil, 1997; Hagemann and Gates, 2003). The LSDM 
continental water-storage estimate includes surface water in rivers, 
lakes, and reservoirs, soil moisture, snow and ice, as well as wa-
ter in the biosphere. Since the currently available LSDM data do 
not have a fine resolution to resolve the spatial variation of water 
storage change in Taiwan, we only use the average result across 
Taiwan.

2.5. GRACE

GRACE measures time-variable global gravity variations and 
therefore records seasonal water mass changes with a spatial reso-
lution of ∼350 km (Tapley et al., 2004). The gravity measurements 
by GRACE are represented by monthly solutions of spherical har-
monic coefficients, which can also be used to estimate surface 
vertical motions due to surface mass loading (e.g., Davis et al., 
2004; Kusche and Schrama, 2005; Fu and Freymueller, 2012). We 
use the GRACE RL06 monthly gravity solutions provided by the 
Center for Space Research to estimate monthly water mass vari-
ations (Wahr et al., 1998) and model its resulting surface vertical 
loading displacements (Davis et al., 2004) using the elastic load 
Love numbers provided by Farrell (1972). We follow the standard 
GRACE data processing strategy and add the degree-1 coefficients 
that are estimated using geocenter variations from a combination 
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Fig. 2. Mean amplitude and phase of GNSS seasonal vertical motion and time series of GNSS and groundwater level data. (a) Amplitude and (b) phase when GNSS reaches 
peak height. Circles and squares indicate sites dominated by elastic loading and poroelastic response, respectively. Black lines denote the boundaries of six physiographic 
regions in Taiwan: from west to east, these are the Coastal Plain (CP), the Western Foothills (WF), the Hsueshan Range (HR), the Central Range (CR), the Longitudinal Valley 
(LV), and the Coastal Range (CoR). (c) Examples of time series of groundwater level (blue) and GNSS (black) at nearby stations (locations marked in (b)) that are out of phase 
and in phase, reflecting the dominant response to elastic loading and poroelastic deformation, respectively. Groundwater level is measured with respect to the mean sea 
level.
of GRACE and ocean model output (Sun et al., 2016; Swenson et 
al., 2008). The major limitation of the GRACE solutions in Taiwan 
is due to the leakage effect that causes signals to spread spatially 
and leak into adjacent regions (e.g., Chen et al., 2017).

3. Methods

3.1. GNSS inversion model

We next invert for seasonal hydrological loading using 176 
GNSS stations and a rectangular grid with 0.25◦ spacing interval 
extending from 120◦E to 122.25◦E and 22◦N to 25.25◦N. The elas-
tic vertical loading deformation due to a mass load is estimated by 
the Load Love numbers and Green’s functions (Wang et al., 2012) 
based on the Preliminary Reference Earth Model (PREM) (Dziewon-
ski and Anderson, 1981). For each grid cell (Text S3), we assume 
a circular disk load with 1 m water height and 14 km radius that 
covers the cell, and compute the crustal vertical displacement at 
each GNSS site corresponding to this load. We employ a weighted 
least-squares inversion algorithm to minimize the following misfit 
function:

‖W (Gm − d)‖2 + β−2‖∇2m‖2 (1)

where W is the weighting matrix equivalent to the inverse of the 
square root of the data covariance matrix. G contains the elastic 
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loading Green’s functions relating surface unit load mass change on 
each grid cell to vertical displacements at each GNSS site. m is the 
effective water thickness to be estimated and d is the amplitude 
of GNSS annual vertical motion computing from the amplitude of 
annual periodic motion in least-squares regression. To avoid rapid 
and unconstrained spatial variations of water mass across adjacent 
grid cells, we use a Laplacian smoothing operator ∇2 and a damp-
ing parameter β , which is chosen based on the relative weight 
between model roughness and data misfit using a trade-off curve 
(Harris and Segall, 1987). Note that the spatial variation of wa-
ter storage may not necessarily be distributed smoothly in space. 
Localized loads (e.g., reservoirs) may dominate the GNSS-observed 
local loading deformation. We cannot easily invert for the local-
ized load due to the lack of spatial resolution. Fig. S8 shows the 
inferred effective water thickness without the regularization term 
in Equation (1) (β−2‖∇2m‖2). Our results indicate that the spatial 
patterns and the mean value of the effective water thickness es-
timated from inversions with and without a smoothing constraint 
are not very different.

3.2. Independent component analysis

Here we use the Independent Component Analysis (ICA) method 
to separate seasonal and interannual signals of the different 
datasets used in this study. Both ICA and Principal Component 
Analysis (PCA) are commonly used to analyze large data sets with 
complex signals in order to reduce the data dimension and recog-
nize primary spatiotemporal features (e.g., Gualandi et al., 2016; 
Milliner et al., 2018). The PCA aims at decomposing data into or-
thogonal linear transformations that maximizes the variance of a 
set of uncorrelated variables whereas the goal of ICA is to find 
a linear transformation associated with variables that are non-
Gaussian and statistically independent. We first analyze our data 
using PCA and find that it cannot effectively isolate seasonal and 
multiyear signals. ICA is better in terms of separating GNSS verti-
cal signals with different periods according to our tests (Figs. S9, 
S10, and S11). We therefore choose the ICA approach which ex-
tracts independent components (ICs) of maximum independence 
instead of considering the minimum correlation adopted by PCA. 
We use the FastICA algorithm (Hyvärinen and Oja, 2000) to isolate 
different underlying sources due to its convergence speed and sta-
bility. Monthly data are used for ICA and detailed descriptions for 
data processing and ICA are included in Text S4. The number of 
ICs used in this study ranges from two to four.

4. Results

We first show the spatial distribution of precipitation and 
GNSS-inferred equivalent water thickness changes and next com-
pare the spatial distributions of seasonal water storage change 
from GLDAS and groundwater level. To study the features of 
temporal variations of water storage changes across Taiwan, we 
stack time series of each dataset (precipitation, groundwater level, 
GLDAS, GNSS, GRACE) and evaluate the multi-year interannual 
variations. We next apply the ICA to the groundwater level, GNSS 
vertical deformation, and GLDAS data in order to investigate spa-
tiotemporal patterns of the different data sets and assess their 
correlations.

4.1. Spatial variation of precipitation and seasonal water storage

The amplitude of mean annual precipitation is 1.46 ± 0.69 m 
between the dry (November to April) and wet (May to October) 
seasons. The largest annual change up to 4 m appears in the west-
ern foothills of central-southern Taiwan (Fig. 3a). On the other 
hand, the mean annual GNSS-inferred effective water thickness is 
0.53 ± 0.17 m in Taiwan (Fig. 3b). The largest seasonal variation is 
up to 0.91 m in southwestern Taiwan. Note that the local spatial 
variations cannot be fully resolved by GNSS due to the insufficient 
spatial coverage of GNSS sites in the Taiwan mountain belt (HR 
and CR in Fig. 3b). The amplitude of water mass change in Tai-
wan estimated from GRACE data is 0.02 m, which is substantially 
smaller than the estimates from other datasets. This is because 
of the coarse spatial resolution and significant leakage effect of 
GRACE solutions for small areas, such as Taiwan. But the GRACE 
result in Taiwan temporally correlates well with the other datasets 
(Fig. 4).

We compare GNSS-inferred seasonal water change with the 
seasonal water variations from the GLDAS-Noah2.0 model (Fig. 3c) 
and in situ groundwater level measurement (Fig. 3d). Note that the 
seasonal hydrological loading from GRACE and LSDM are shown 
in Fig. S12. We did not include them in the comparison due to 
their low spatial resolution. Seasonal variation of water thickness 
from the GLDAS-Noah model ranges from 0.05 to 0.15 m, only 
approximately 17% of the mean water thickness change inferred 
from GNSS (Fig. 3b). The seasonal fluctuation of groundwater level 
varies from 1-15 m and its largest seasonal changes are found 
near the apex of alluvial fans, in and around agricultural areas 
or fish farms (Fig. 3d). In general, the spatial patterns of an-
nual water mass changes estimated from precipitation, GNSS, and 
GLDAS-Noah2.0 data are consistent with the largest seasonal wa-
ter fluctuation in SW Taiwan (Fig. 3). The seasonal amplitude of 
GLDAS-Noah 2.0, mainly contributed by soil moisture variations, is 
well below the GNSS-inferred water thickness variation, implying 
the contributions of groundwater, reservoir water, surface water, 
and soil moisture at depths larger than 2 m are substantial in Tai-
wan. Previous studies also found similar results in the Western 
United States where GLDAS also underestimates total water storage 
changes (Argus et al., 2014; Fu et al., 2015). When we consider the 
mean annual LSDM water storage change including soil moisture 
and surface water, the mean seasonal amplitude is 0.18 m, reach-
ing about 34% of the GNSS-inferred water thickness change. The 
spatial variability of seasonal groundwater level change is very dif-
ferent from the other measurements and is likely associated with 
the sparse distribution of groundwater stations, the local human 
groundwater use and/or heterogeneity in storativity (Chen et al., 
2018; Kuhlman et al., 2008).

Rainfall is the primary source of water in Taiwan. Due to the 
steep topography and large rainfall intensity in Taiwan, a large 
portion of precipitation contributes to rapid runoff rather than 
infiltration and subsurface storage. By comparing different water 
storage change estimates (Fig. 3), we can approximately quantify 
the partitioning between water infiltration, temporary surface wa-
ter storage, and runoff. The inferred water thickness from GNSS is 
presumably a proxy for the total water storage assuming that con-
tributions from other sources (ocean loading, atmosphere, loading 
deformation due to mass changes outside Taiwan, poroelastic, dra-
conitic signal etc.) have been successfully mitigated. The mean am-
plitude of GLDAS-Noah2.0 is 0.09 m (Fig. 3c) which mainly consists 
of soil moisture changes. The annual change of LSDM in Taiwan is 
0.18 m which is primarily from soil moisture and surface water. 
Therefore, shallow soil moisture and surface water both contribute 
about 17% of total water storage. A considerable fraction of 66% 
for total water variation may include contributions from deep (>2 
m) groundwater or other sources. They may also reflect substantial 
underestimates of annual water storage changes in the hydrolog-
ical assimilation models. Estimates of the water storage from 18 
major surface reservoirs in Taiwan contribute no more than 8% of 
total water storage change (Text S5). If we consider soil moisture 
contributes about 50% of the LSDM-model storage, then surface 
water (in rivers, lakes, and reservoirs) contributes another half. The 
contribution from the latter is likely to be underestimated. More-
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Fig. 3. Amplitude and phase of the mean seasonal water change from 2005 to 2016. Black lines denote the boundaries of six physiographic regions in Taiwan (same as in 
Fig. 2a). (a) The mean annual amplitude and phase in precipitation between the wet and dry seasons, (b) in effective water thickness inferred from GNSS, (c) in soil moisture 
from GLDAS-Noah2.0, and (d) in groundwater level measured at monitoring wells.
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Fig. 4. Interannual variations in stacking time series of precipitation, groundwater 
levels, GNSS-W (Water change), LSDM-W, GLDAS-W, and GRACE-W data averaged 
across Taiwan from 2005 to 2016. Lines shows detrended time series estimated 
using a consecutive one-year sampling window within a hydrological year (May 
1st–April 30th) from various data sets. The curves are offset for clarity. Vertical line 
indicates the time of the 2010 Mw 6.4 Jiashian earthquake.

over, we estimate the seasonal storage efficiency (Fig. S13) from 
the ratio of GNSS-inferred water thickness changes (Fig. 3b) to the 
annual amplitude of precipitation (Fig. 3a). The ratio varies from 
20% to 60% in areas with good spatial coverage of GNSS sites. 
We find the water retention in eastern Taiwan is slightly larger 
than that in western Taiwan, which is likely associated with the 
less urbanized landscape and the less water use in agriculture in 
eastern Taiwan. Despite the steep topography in Taiwan, the spa-
tial pattern of annual precipitation between the dry and wet sea-
sons is generally consistent with water storage from GLDAS-Noah 
2.0 and effective water thickness derived from GNSS vertical dis-
placements, suggesting the amount of infiltrated water scales with 
rainfall and is less influenced by topography. The high infiltration 
capacity in steep mountain areas may be due to high forest cover-
age and highly permeable soils (Cheng et al., 2002).

4.2. Temporal variation of water storage

Investigating interannual and seasonal changes of water stor-
age can provide critical insights into the water cycle process. To 
study the features of temporal variations of water storage changes 
across Taiwan, we first stack time series of each dataset, remove 
the long-term trend, and then evaluate the multi-year interannual 
variations. In section 4.3 below, we will apply the ICA to further 
characterize the spatiotemporal patterns of different water stor-
age datasets. Fig. 4 shows detrended and stacked time series of 
precipitation, groundwater levels, LSDM-W (LSDM-derived Water 
change), GLDAS-W, GNSS-W, and GRACE-W. The water change is 
calculated from the product of the area of Taiwan (36,193 km2) 
and the effective water thickness (EWT). The time series are esti-
mated within a hydrological year (May 1st–April 30th, defined in 
Section 2.1), which is chosen to minimize seasonal variations. Af-
ter removing the linear trends, heavy precipitations in 2007-2008 
and 2012-2013, which generally correspond to high groundwater 
levels, LSDM-W, and GLDAS-W in the same periods (Fig. 4). The 
temporal variation in GNSS-W and GRACE-W due to the wet pe-
riods is less prominent compared to other data sets but relatively 
higher peaks can be found in 2008 and 2012. The troughs due 
to the dry periods in 2009-2010 and 2014 are evident in all data 
sets, except for the dry year of 2014, which shows an increase in 
GRACE-W. The interannual water change over periods of dry and 
heavy precipitation can be up to 9 km3 in GNSS-W and 2.7 km3 in 
LSDM-W. The GNSS-W exhibits an increasing trend in 2010, which 
is not likely associated with hydrological signals (Text S6). The cor-
relation coefficients between different data sets are about 0.3-0.8 
(Table S2) and can be improved to 0.5-0.8 when we ignore GNSS-
W and GRACE-W data. Note that the interannual time series do not 
show time lags between the different data sets.

4.3. Spatial and temporal patterns estimated from ICA

To better resolve the spatiotemporal water storage variations, 
we decompose the groundwater level, GNSS, and GLDAS-Noah2.0 
time series using the ICA technique. Fig. 5 shows the four ICs de-
rived from groundwater level data. The variance reduction for the 
four ICs is 65%. Fig. 5a shows the time series of groundwater level 
contributed by each IC, and the percentage of contribution to the 
variance is shown in the top right corner of each panel. The phases 
of the annual peaks for IC 1 and IC 2 are around DOY (day-of-
year) 305 and DOY 215, respectively. This feature is likely related 
to the double rainy seasons in Taiwan (e.g., Chen, 1992; Wang et 
al., 1994), which involve typhoons in August-September and the 
Meiyu period in mid-May to Mid-June (Fig. S14). When a com-
ponent has an annual peak in a similar period of the year, we 
consider this component to be seasonal. The IC1 and IC2 show 
mostly seasonal changes and their combination explains 80% of 
total variance in the filtered time series and best represents the 
seasonal variation of groundwater level. We estimate the average 
phase of seasonal water level changes by fitting annual sine and 
cosine functions to the combined IC time series, and find the an-
nual peak occurs at DOY 270 (early October), consistent with the 
median peak on DOY 265 estimated from a least-squares regres-
sion using time series of groundwater level. The spatial pattern of 
seasonal changes shows large variations at stations located in and 
around the apex of the alluvial plain, similar to the results shown 
in Fig. 3d. The IC3 shows a long-term decreasing trend in most 
areas of the west coastal plain. The IC4 is likely related to an in-
terannual variation of precipitation (Fig. 5a). Heavy precipitation in 
2012-2013 causes the groundwater level rise in NW Taiwan and 
the Choushuichi alluvial plain whereas a slight decline of ground-
water level at the same period is found in the Pingtung plain due 
to reduced precipitation in that area.

For the GNSS vertical displacement series, we consider four ICs 
which provide a combined variance reduction of 57% (Fig. 6a). The 
ICs 1-2 show mostly seasonal motions and the phases of annual 
peak for IC1 and IC2 are around DOY 37 and DOY 123, respec-
tively. The GNSS ICs 1-2 are likely corresponding to IC2 (DOY 215) 
and IC1 (DOY 305) in groundwater level due to the double rainy 
seasons in Taiwan (Fig. S14). The sum of ICs 1-2 best represents 
the seasonal variation and explains 80% of the total variance in 
the filtered time series. The average peak of GNSS seasonal vertical 
motion due to water loss appears in DOY 75 (March), consistent 
with the peak DOY 55 estimated from a least-squares regression. 
The ICs 3-4 show mostly interannual variations and IC 3 has a sig-
nificant response to the dry period of 2014-2015 (Fig. 4). Spatial 
patterns of ICs 3-4 are heterogeneous with both positive and neg-
ative responses. Most stations in SW Taiwan show significant uplift 
during the water loss in 2014-2015.
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Fig. 5. Independent components (ICs) of spatial and temporal variations for groundwater level data from 2005 to 2016. The top panel (a) shows the temporal evolution of 
each IC in meter. The variance reduction from the 4 ICs is 65% and the percent contribution of each IC to the filtered time series is shown by black text labels in each panel. 
Red text indicates the time of annual peak in DOY (day-of-year). Blue dash line denotes moving-average rainfall with a 12-month window and time shift of one month. Four 
panels in (b) show the spatial response of ICs 1-4, respectively. The product of temporal and spatial weights provides the time series of groundwater level contributed by 
each IC.
The ICA decomposition of water storage estimates from GLDAS-
Noah 2.0 is shown in Fig. 7. Two ICs can explain 83% of data 
variance. The seasonal fluctuation is best explained by the IC 1 
with the peak of water storage in DOY 230, consistent with the 
peak of DOY 220 in regression results. The spatial pattern indicates 
a large variation of water storage in SW Taiwan, similar to the spa-
tial distribution of annual water change from GNSS-inferred water 
thickness and precipitation observations (Fig. 3). The IC2 shows 
a sharp decrease of GLDAS-Noah 2.0 in 2016, opposed to the in-
crease of water shown in the other data sets (Fig. 4). The reason 
is unknown but might be caused by the underestimation of some 
water components in the GLDAS model (e.g., Fu et al., 2015).
5. Discussion

5.1. Model resolution

In order to evaluate the spatial resolution of GNSS inferred ef-
fective water thickness, we perform checkerboard resolution tests 
using the locations of GNSS sites and data covariance matrix 
adopted for the inversion in Section 3.1. The input checkerboard 
pattern and output model are shown in Fig. 8. Results of these 
tests demonstrate that the inversion is able to resolve water stor-
age change in northern and western Taiwan, recovering about 60%-
70% of the input water thickness. In the Longitudinal Valley, the 
spatial resolution is lower than that in western Taiwan since most 
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Fig. 6. Independent components (ICs) of spatial and temporal variations for GNSS vertical position time series from 2005 to 2016. Stations whose time series are dominated 
by poroelastic response (squares in Figs. 2a and 2b) are excluded. The top panel (a) shows the temporal response of each IC. The variance reduction from the 4 ICs is 57% and 
the percent contribution of each IC to the filtered time series is shown by black text labels in each panel. Red text indicates the time of annual peak in DOY (day-of-year). 
Four panels in (b) show the spatial response of ICs 1-4, respectively. The product of temporal and spatial weights provides the time series of GNSS vertical motion contributed 
by each IC.
continuous GNSS stations are distributed in a narrow strip. Spa-
tial resolution in the Central Range of Taiwan is generally poor 
with amplitudes off by ∼50%, but the overall pattern is adequately 
resolved. For the checkers with less than 3 GNSS stations, the res-
olution is generally unsatisfactory.

5.2. Time-variable seasonal amplitudes changes

We obtain similar spatial patterns for annual precipitation 
change, the GNSS-inferred water thickness, and soil moisture from 
GLDAS (Fig. 3). To investigate temporal variations of seasonal wa-
ter change, we compare changes of seasonal amplitudes extracted 
from different datasets (Fig. 9a). The annual fluctuation of GNSS-
EWT is derived from GNSS vertical position time series (ICs 1-2). 
The GLDAS-Noah2.0 (IC 1) and groundwater level (ICs 1-2) are es-
timated from the summation of the products for the temporal and 
spatial eigenvectors. For seasonal variability of rainfall, LSDM-EWT, 
and GRACE-EWT, we use a consecutive one-month sampling win-
dow (Fig. 9a). Table 1 lists cross-correlation coefficient (cc) and 
time lag between seasonal variations extracted from various data 
sets. Estimates of cc between different data pairs range from 0.3 
to 0.8 with time lags of 1-2 months. The linear relationship be-
tween seasonal precipitation and other data sets is weak with cc
of 0.3-0.7. In contrast, other data pairs show stronger linear cor-
relations with cc of 0.5-0.8. In general, precipitation first reaches 
its seasonal maximum, and then GLDAS, GNSS-EWT, LSDM-EWT, 
groundwater level, and GRACE-EWT subsequently attain their an-
nual peak within 0-2 months (Table 1, Figs. 9a and S16). During 
the 2005-2016 study time period, the minimum water storage 
occurred in early 2011 and 2015 (shaded red bands in Fig. 9a). 
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Fig. 7. Independent components (ICs) of spatial and temporal variations for total water storage from GLDAS-Noah 2.0 from 2005 to 2016. The top panel (a) shows the temporal 
response of each IC. The variance reduction from the 2 ICs is 83% and the percent contribution of each IC to the filtered time series is shown by text labels in each panel. 
Two panels in (b) show the spatial response of ICs 1-2, respectively. A sharp decrease of IC 2 near 2016 may indicate some problems in GLDAS-Noah2.0 in that period.
The lowest GNSS-EWT near 2010 results from GNSS subsidence 
at many stations distributed across all of Taiwan, whose cause 
remains unclear (Text S6). Fig. 9a shows that the temporal varia-
tions of seasonal amplitude changes for precipitation observations, 
groundwater level, and LSDM-EWT, GLDAS are similar.

We also estimate the interannual trends of GNSS-EWT from 
GNSS vertical time series (ICs 3+4), GLDAS (ICs 1+2), and ground-
water level (ICs 3+4) series, respectively, within a hydrological 
year (Fig. 9b). To compare with the interannual variations of rain-
fall, LSDM-EWT, and GRACE-EWT, we remove the long-term linear 
trends in ICA time series of GNSS-EWT, GLDAS, and groundwa-
ter level. If we ignore the unclear GNSS motion around 2010, the 
interannual trends of most data sets show a generally consistent 
temporal pattern. The water gain in 2007-2008 and 2012 to 2013 
as well as the water loss in 2009-2010 and 2014 to early-2015 are 
evident in the majority of data sets.

Compared with rainfall, LSDM-EWT, GLDAS, and GRACE-EWT 
datasets, groundwater and GNSS-EWT observations show a time 
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Fig. 8. Checkerboard tests for inversion of elastic model deformation from the synthetic load pattern. Two distributions of input load with 0.25◦ and 0.5◦ spatial patterns are 
performed. The inversion with 0.5◦ spacing can recover 60%-70% of input water thickness in northern and western Taiwan with dense GNSS network station spacing.
lag of about one year during the wet periods from 2011 to 2013 
(Fig. 9b). For the dry year of 2014, the minimum of GNSS-EWT 
and groundwater level both occur in 2014-2015 whereas the min-
imum of GRACE-EWT appears at the end of 2013 (Fig. 9b). Since 
GNSS and GRACE are presumably measures of total water storage, 
the time lag between them is not expected. Note that the sea-
sonal peak of GRACE-EWT also shows a one-month lag behind the 
annual peak of GNSS-EWT (Table 1 and Fig. S15). One possible ex-
planation may be the different spatial sensitivities of GNSS and 
GRACE to water changes. A single GNSS loading displacement is 
mainly affected by local loads within 100-200 km (e.g., Bevis et al., 
2005) whereas GRACE has a much coarser spatial resolution, as ev-
ident by the mean seasonal amplitude of 0.02 m for GRACE-EWT, 
about 4% of the average annual amplitude of GNSS-EWT (Fig. S15).

Since dry periods in Taiwan often occur in winter and spring 
due to the lack of precipitation in the previous wet summer sea-
son, we estimate the annual change of seasonal amplitude as the 
difference between the maximum value from July to December of 
the given year and the lowest value from January and April in the 
following year. Therefore, we can obtain estimates of the seasonal 
amplitude within a hydrological year. Even though precipitation is 
commonly used to quantify water resources, precipitation changes 
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Fig. 9. Temporal variations of average seasonal and interannual water storage for different geodetic and hydrological datasets from 2005 to 2015 using ICA. See legend for 
scale and data units. (a) Time series of seasonal changes derived from ICA. Red shaded band denotes the dry period. Comparisons of seasonal amplitudes and phases between 
all data pairs reveal different response times to precipitation, reflecting the complex nature of transient water storage due to variable rainfall patterns, infiltration rate, soil 
saturation, and runoff. (b) Interannual changes derived from ICA in each hydrological year.
Table 1
Estimates of cross-correlation coefficient (cc) and time lag between seasonal mo-
tions with one-month sampling rate extracted from various data sets with the ICA 
(Fig. 9a). The first number is cc and the second number is time lag in months. The 
phase shift is the column parameter relative to the row parameter. Negative num-
ber means seasonal peak of the column parameter is ahead of the row parameter 
and vice versa.

Precipitation LSDM-
EWT

GRACE-
EWT

GLDAS Groundwater 
level (GW)

GNSS-EWT 0.31/-1 0.60/0 0.52/1 0.60/0 0.65/1
Groundwater 

level (GW)
0.42/-2 0.80/-1 0.68/0 0.77/-1

GLDAS 0.43/0 0.66/0 0.52/1
GRACE-EWT 0.44/-2 0.71/0
LSDM-EWT 0.67/-1

between the dry and wet seasons do not show a good correla-
tion with the remaining data sets (Table 1). The poor correlation 
between net annual rainfall and the various measures of water 
storage is likely owing to the larger precipitation rate compared to 
the infiltration rate and the large amount of runoff flowing quickly 
into the ocean before being recorded.

5.3. Spatial pattern of time-variable seasonal amplitudes

Additionally, we compare the spatial pattern of seasonal os-
cillation and its variability after removing the average from the 
hydrological years (May 1st–April 30th) 2005 to 2015. The spa-
tial patterns of time-variable seasonal amplitudes in precipitation, 
GLDAS and GNSS-EWT are similar to the average result shown in 
Fig. 3. The annual water storage changes illustrated in precipitation 
and GLDAS exhibit larger annual fluctuations in western Taiwan 
compared to the east, with the largest annual variation concen-
trated in central to SW Taiwan (Figs. S16 and S17). The contrast 
of annual variability between western and eastern sides of Taiwan 
is less prominent in GNSS-EWT (Fig. S18). Taiwan experienced two 
relatively dry periods in 2005-2016, including the first half of 2011 
and the extreme dry period in early-mid 2015, corresponding to 
the hydrological years of 2010 and 2014. We find relatively low 
precipitation in 2010-2011 and 2014-2015 (Fig. S16) in contrast to 
high annual water changes in GLDAS in the hydrological years of 
2010 and 2014 (Fig. S17), which are different from our expectation 
that annual water storage change scales with annual precipitation 
as found in the western U.S. (Fu et al., 2015). We postulate that 
soil moisture at depths of 0-2 m provided by GLDAS model only 
represents water storage in the shallowest reservoir which is al-
ready saturated from moderate rain and/or the precipitation rate is 
larger than the maximum rate of infiltration and the excess water 
becomes surface runoff. Therefore, the large precipitation in 2012 
does not result in an increase of peak annual amplitude compared 
to other years (Fig. 9a).

Variability of GNSS-EWT also indicates a large water storage 
change during 2010 and a modest variation in 2014 (Fig. S18), op-
posite to the expectation from our hypothesis that water storage 
change is proportional to the amount of precipitation. We consider 
several possibilities to explain this disagreement. The larger-than-
normal elastic ground uplift may occur due to the significant water 
loss in dry years, so the computed GNSS-EWT is substantially in-
creased. On the other hand, during especially wet years, enhanced 
runoff and limited storage capacity in soil moisture, surface- and 
groundwater systems may moderate the seasonal amplitude as 
well. It is also important to keep in mind that the GNSS time se-
ries could be biased by other sources of annual deformation. In 
addition to elastic loading due to surface water storage change, 
GNSS measurements may be influenced by local poroelastic effects 
from massive pumping of groundwater during the dry years. The 
poroelastic effect is presumably controlled by the thickness of un-
consolidated sediments. Previous studies suggest that unconfined 
aquifers and deep water in bedrock do not produce significant 
poroelastic deformation (Argus et al., 2017). Although we remove 



Y.-J. Hsu et al. / Earth and Planetary Science Letters 550 (2020) 116532 13

Fig. 10. Spatial distribution of phase difference of the annual peaks among different data pairs. GW represents groundwater level. Note that the peaks of (a) GNSS-EWT and 
(b) GLDAS precede the peaks in precipitation (September) in NE Taiwan. The primary water resource in NE Taiwan comes from mountains in northern Taiwan where rain 
gauges show the peak rainfall in July-August.
GNSS sites located on alluvial fans and Quaternary basins to min-
imize the influence of poroelastic effects, some stations close to 
these areas may still have been affected. Other potential sources of 
seasonal signals are discussed in Text S7.

5.4. Differences in phase between precipitation and storage parameters

Time lags between precipitation, groundwater level, and sur-
face deformation presumably provide important constraints for the 
complex dynamic processes involved in water storage and trans-
port. Fig. 3 shows the average phase of peak seasonal motion from 
different observations. Since the time series of precipitation often 
shows a saw tooth pattern, we use a consecutive one-month sam-
pling window to estimate the phase of the seasonal peak. Heavy 
precipitation occurs in June-July in western Taiwan and is about 
one month ahead of the largest rainfall in eastern Taiwan. Based 
on climatology data, the precipitation peak in June-July in west-
ern Taiwan is mainly due to the southwesterly monsoon rainfall 
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in the Meiyu season (Chen, 1992), and the rainfall peak in eastern 
Taiwan in August is attributed to typhoons in late summer (Wang 
et al., 1994). Both the peaks of GLDAS model estimates and GNSS-
EWT in western Taiwan occur in August-September, and do not 
show a significant difference between western and eastern Taiwan 
(Figs. 3b, c). In western Taiwan, the peaks of GLDAS and GNSS-EWT 
lag one to two months behind the largest rainfall (Figs. 10a and 
10b) and the peak of groundwater level lags two to three months 
behind the summer heavy rain (Fig. 10c). The time lag implies a 
large amount of excess rainfall quickly flows into the ocean in July, 
as longer-term subsurface water storage grows. This is also con-
firmed by GNSS-derived seasonal water storage changes being a 
fraction of the annual precipitation input (Fig. S13). In addition, 
the larger watershed and 18 major reservoirs in western Taiwan 
imply a higher storage capacity, taking longer time to fill up. Note 
that the peaks of GLDAS and GNSS-EWT precede the largest rain-
fall in NE Taiwan because the primary water source comes from 
northern mountains where peak rainfall occurs in July-August.

The heavy rainfall in June and July fails to maximize the GLDAS-
model storage in shallow soil layers and vegetation, owing to an 
upper bound on the recharge rate controlled by the infiltration ca-
pacity, which is much less than the heavy rainfall intensity. The 
hypothesis of an upper limit on the recharge rate is also supported 
by Fig. 9a and the poor cross-correlation between the amplitude 
of rainfall and GLDAS (Table 1). That is, the increase of rainfall 
during the wet years, such as 2012, does not lead to a signifi-
cant rise in water storage captured by the GLDAS model. Since 
the water storage has not reached its capacity after the first wet 
period (June and July), the high rainfall brought by summer ty-
phoons during August and September results in additional water 
gain in Taiwan. The continuous increase of water storage suggests 
that the recharge from rainfall in this period (August and Septem-
ber) is still larger than the total water discharge to the ocean via 
rivers and to the atmosphere through evapotranspiration. The wa-
ter storage finally reaches its maximum by the end of September.

The data shows a one-month lag between the peaks of pre-
cipitation in western and eastern Taiwan, but the annual peaks 
of GNSS-EWT and GLDAS are both close to August-September 
(Fig. 3). In Taiwan, the total water content on both sides reaches a 
maximum after the typhoon-related heavy rainfall throughout the 
whole summer. The highest groundwater level is about one month 
and two month behind the peak of GNSS-EWT on the western and 
eastern sides of Taiwan, respectively (Fig. 10d), suggesting a faster 
downward water movement or percolation in the vadose zone in 
western Taiwan compared to that in eastern Taiwan. The phase 
shift reflects the time for the infiltrated water to move from the 
shallow vadose zone to the saturated zone below the groundwater 
table. The temporal patterns of GNSS-EWT and groundwater level 
data provide a novel way to estimate the quantity and residence 
time of water in the vadose zone and is worthy of further investi-
gation in the future.

6. Conclusions

Our study indicates that geodetic data, including GNSS-derived 
deformation and GRACE gravity measurements, hydrological assim-
ilation models and in-situ groundwater observations consistently 
show significant and complicated water storage variations in Tai-
wan, both spatially and temporally. GNSS vertical loading defor-
mation from the dense network in Taiwan is demonstrated to be 
capable of quantifying water storage change, although the local 
spatial variation in the Central Range is not well resolved due 
to insufficient GNSS station coverage. Mean annual water storage 
change across Taiwan estimated from GNSS is 0.53 m with a max-
imum of 0.91 m in SW Taiwan. While GRACE gravity time series 
appear to capture the temporal pattern of total surface mass load 
changes well, the small size of Taiwan causes leakage problems 
that lead to a severe underestimate of the amplitude of the wa-
ter storage cycles. The spatiotemporal patterns of seasonal water 
storage and interannual trends extracted from precipitation, GNSS, 
and GLDAS Noah 2.0 are very similar. The phases of peak seasonal 
water storage derived from various data sets reflect the spatially 
variable infiltration capacity and landscape across Taiwan.

Efficient management of water resources in Taiwan is of 
paramount importance and the monitoring of the water resource 
redistribution should be accurate and in real time. Incorporat-
ing GNSS loading deformation, LSDM, GLDAS, and GRACE gravity 
change into an integrated water monitoring network provides in-
dependent information on net storage changes. The development 
of optimal strategies combining hydrological and geodetic mea-
surements and models still needs further investigation.
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