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Abstract: Using low-cost sensors to build a seismic network for earthquake early warning (EEW) and
to generate shakemaps is a cost-effective way in the field of seismology. National Taiwan University
(NTU) network employing 748 P-Alert sensors based on micro-electro-mechanical systems (MEMS)
technology is operational for almost the last 10 years. This instrumentation is capable of recording
the strong ground motions of up to ± 2g and is dense enough to record the near-field ground
motion. It has proven effective in generating EEW warnings and delivering real-time shakemaps
to the concerned disaster relief agencies to mitigate the earthquake-affected regions. Before 2020,
this instrumentation was used to plot peak ground acceleration (PGA) shakemaps only; however,
recently it has been upgraded to generate the peak ground velocity (PGV), Central Weather Bureau
(CWB) Intensity scale, and spectral acceleration (Sa) shakemaps at different periods as value-added
products. After upgradation, the performance of the network was observed using the latest recorded
earthquakes in the country. The experimental results in the present work demonstrate that the new
parameters shakemaps added in the current work provide promising outputs, and are comparable
with the shakemaps given by the official agency CWB. These shakemaps are helpful to delineate
the earthquake-hit regions which in turn is required to assist the needy well in time to mitigate the
seismic risk.

Keywords: MEMS accelerometers; real-time shakemaps; earthquake early warning; seismic hazard
mitigation; P-Alert

1. Introduction

Taiwan, having an approximate area of 36,193 km2, has a complex tectonic structure
and sits at the junction of the Luzon Island arc and the Ryukyu Island Arc. In Eastern
Taiwan, the Philippine Sea plate subducts under the Eurasian plate along the Ryukyu
Trench (Figure 1), and off the southern tip of Taiwan, the Eurasian plate subducts under
the Philippine Sea plate [1]. Because of this on-going activity, the country is repeatedly
rocked by high and intermediate magnitude earthquakes. Many faults (thrust and strike-
slip) responsible for these earthquakes are identified all over the country. Most of the
earthquakes occur in Taiwan as a result of arc-continent collision and subduction, and
sometimes the higher magnitude earthquakes occurring along this boundary pose threat
to life and property. As earthquakes are unpredictable, therefore, some other measures of
protecting human lives and property damage should be explored.
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Figure 1. The seismotectonic settings of Taiwan along with the distribution of P-Alert instruments 
in different parts. The stars represent the epicenters of the earthquakes mentioned in sections 4 & 
6. 

The EEW system is one of the best ways developed in previous decades and is oper-
ational in many areas of the world based on regional and onsite algorithms. The concept 
of regional EEW lies in detecting ground movement in the early stage of an earthquake 
and transmitting the ground motion data recorded by the instruments to the central re-
cording system for computation of various parameters, which can be used to issue the 
warning during an earthquake. A regional EEW system consisting of several instruments 
installed within a specified area is used to record the earthquake. The onsite EEW system, 
which determines the earthquake parameters from the initial portion of the P waves and 
predicts the more severe ground shakings of the following S-wave trains. The CWB is the 
official agency for reporting EEW in Taiwan [2]. The EEW system of CWB uses around 
140 instruments installed in different parts of the country [3]. Currently, the CWB network 
acts as a regional EEW system and issues the warning to the cities around 50 km away 
from the epicenter. For all the cities lying within 50 km, it is a blind zone and no warning 
is possible under this system. In addition to this official EEW network established by 
CWB, the other two EEW networks established by the National Center for Research on 

Figure 1. The seismotectonic settings of Taiwan along with the distribution of P-Alert instruments in different parts. The
stars represent the epicenters of the earthquakes mentioned in Section 4 and Section 6.

The EEW system is one of the best ways developed in previous decades and is
operational in many areas of the world based on regional and onsite algorithms. The
concept of regional EEW lies in detecting ground movement in the early stage of an
earthquake and transmitting the ground motion data recorded by the instruments to the
central recording system for computation of various parameters, which can be used to
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issue the warning during an earthquake. A regional EEW system consisting of several
instruments installed within a specified area is used to record the earthquake. The onsite
EEW system, which determines the earthquake parameters from the initial portion of the P
waves and predicts the more severe ground shakings of the following S-wave trains. The
CWB is the official agency for reporting EEW in Taiwan [2]. The EEW system of CWB uses
around 140 instruments installed in different parts of the country [3]. Currently, the CWB
network acts as a regional EEW system and issues the warning to the cities around 50 km
away from the epicenter. For all the cities lying within 50 km, it is a blind zone and no
warning is possible under this system. In addition to this official EEW network established
by CWB, the other two EEW networks established by the National Center for Research
on Earthquake Engineering (NCREE), and National Taiwan University (NTU) are also in
operation. The NCREE network is an on-site and regional hybrid network and uses around
90 instruments installed in various elementary schools [4]. The CWB and NCREE networks
work perfectly but sometimes the denser networks are required to perform additional
tasks, for example, to plot the detailed shakemaps for the rapid post-earthquake response.
As both CWB, as well as NCREE networks, use traditional high-cost seismographs or
accelerographs, installing more instruments will be an expensive process.

The EEW indeed requires densely spaced instruments to perform in a better way,
therefore, various countries including Taiwan are working on developing substitute in-
struments that may be affordable than the traditional ones. The MEMS accelerometers for
seismological studies and especially EEW were introduced in the 1990s [5]. These sensors
are tiny, cost-effective, and ideal for recording near-source high-frequency ground motion.
The applicability and usefulness of these MEMS-based instruments in different applications
including EEW and recording aftershock activity are reported by various researchers [6–15].
With the advancement in MEMS-based technology, many countries and companies have
developed their sensors and are using them widely for EEW [16–19].

The NTU network uses the low-cost accelerographs known as P-Alert for the configu-
ration of the EEW system. These P-Alert sensors use MEMS accelerometers housed on a
small printed circuit board. These sensors are developed by the research team at NTU in
collaboration with a technology company. These newly introduced sensors have reduced
the cost to around 1/10 times of the traditional instruments. Like most of the MEMS-based
networks around the world, P-Alert sensors with low dynamic range and low sensitivity
belong to Class-C type [9]; therefore, the NTU network tries to focus on the amplitude
parameters instead of those parameters which work stably only with high signal-to-noise
ratio (SNR) data, for example, P-wave arrival time or τc. To maximize the advantage
of MEMS sensors, the NTU network has dedicated to generating intensity shakemaps
which are indeed helpful for hazard mitigation and relief for the past few years. Individual
P-Alert devices can not only provide continuous earthquake waveform to the processing
center but also give onsite early warning based on local P-waves shaking that makes these
devices popular to the public. And the low-cost of P-Alert instruments allow building
a denser network in different parts of the country. Currently, around 748 instruments with
an average spacing of around 5 km are installed.

2. The NTU Network

The NTU network consists of first-generation P-Alert and second-generation P-Alert
plus instruments. The P-Alert plus instrument is an improved version of P-Alert, obtained
by overcoming the drawbacks of P-Alert, especially related to dynamic range and storage.
P-Alert sensors have 16-bit resolution and had a problem in picking the smaller earthquakes,
but this drawback has been improved in P-Alert plus that uses 24-bit tri-axial MEMS.

The first purpose of the NTU network is to record the earthquakes, and process these
records over different frequency ranges to calculate various parameters in real-time [20].
Regularly, various parameters essential for EEW are calculated, and once the calculated
parameters hint at the earthquake magnitude ≥5.5, the warning is disseminated to disaster
relief agencies to take proper action. Other than EEW, NTU network data is also used
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for other applications including shakemaps plotting and seismological studies. The data
recorded by this network is also archived for future use for seismology and engineer-
ing researches such as post-earthquake structure health evaluation [21]. The successful
functioning of this P-Alert high-density seismic monitoring network during various earth-
quakes in Taiwan is cited by the NTU researching team, particularly, in terms of EEW, and
providing detailed shakemaps to disaster relief agencies for earthquake disaster prevention
and risk mitigation [15,22,23]. The damage scenario during an earthquake can be repre-
sented using shakemaps. In recent times, to utilize the network efficiently, the network is
upgraded to plot the PGV, the CWB Intensity scale, Sa, and even coseismic displacement
shakemaps [24], besides, PGA shakemap.

In the regional warning process, the warning time depends on the distance of the
recording station from the epicenter and the speed of data transmission from the field
instrument to the central recording station. The earthquake can be detected promptly if the
recording instruments are closer to the epicenter. Also, the accurate warning is a function
of more than one instrument, so the detecting network should be denser. A considerable
error is reported in the earthquake location when the earthquake occurs either at the border
or outside the instrumentation monitoring window. Because of the erroneous location,
there may be a delay in estimating the shaking and subsequently issuing the warning to
the affected areas. As P-Alert instruments are installed densely in every part of Taiwan, the
in-land earthquakes are reported accurately with minimum error. The offshore events on
the other hand report a little higher error in location but still are manageable [25]. The data
transfer in the regional warning is crucial as delay in packaging and sending the signal to
the central computing server may cause a delay in parameter calculation and eventually
the issuing of warning [26]. To ensure that the data transfer may not cause an additional
delay in issuing warnings, all the instruments are mainly installed in elementary schools,
and each instrument is assigned a dedicated stable ethernet connection. The significance
of the MEMS seismic instruments for seismic monitoring has been established in the past
few years. In recent times, some countries are working for EEW using low-cost sensors.
As P-Alert instruments are cost-effective, the P-Alert network is updated every month to
include additional 5-10 instruments. The distribution of all P-Alert instruments installed in
Taiwan is shown in Figure 1.

3. Shakemaps

In early times, the earthquake magnitude and location were the two early warning
parameters available after the occurrence of an earthquake. Later on, it was realized that
additional details are required to access the damage pattern. An earthquake that has one
magnitude and location will depict different shaking scenarios corresponding to different
parameters like PGA and Intensity. The property damage can be reduced if the emergency
services are directed to earthquake-hit areas at the earliest. So, this information related
to affected areas can be gathered from shakemaps, such as Intensity shakemap, PGA
shakemap, etc. A shakemap can demonstrate the ground shaking at various locations of
a region. The conventional way of generating a shakemap is the combination of ground-
motion prediction equations (GMPEs), EEW parameters, site corrections, and partial
observation values [27]. However, due to the limitation of the point source from applying
GMPEs, those near-source and finite fault effects are barely seen on this kind of shakemaps.
It is hard to do a perfect finite rupture model to approximate the real scenario just like
that we can’t handle the real fault rupture as well. Still, there are other ways to achieve
the goal of presenting details based on different parameters other than magnitude and
location. There is an uncomplicated method that is simply based on increasing the amount
of the seismographs to achieve a denser and more uniform spacing earthquake monitoring
network. With this kind of dense network, we can directly integrate the measurements from
each instrument and do the interpolation to derive a highly detailed shakemap with near-
source and finite fault information. This kind of measurement would be a really difficult
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challenge with traditional sensors but is achievable using the NTU P-Alert network that is
all consisted of MEMS sensors, P-Alerts.

The P-Alert network till 2019 has published near real-time PGA shakemaps during
and after the occurrence of an earthquake. In general, P-Alert starts plotting shakemaps
once 10–12 instruments confirm PGA to be 0.012g. These maps provide an idea about the
rupture directivity, as well as radiation patterns [23,26]. Initially, the NTU network was
used to plot PGA shakemaps only. However, later on, it was realized that only PGA maps
were not enough to carry out additional studies. Sometimes, PGA maps are not sufficient
to locate the earthquake-ravaged areas and represent the damage pattern effectively and
so the information provided to the earthquake disaster management authorities may be
inadequate. In recent times, two earthquakes having the same magnitude that occurred
in 2018 and 2019 in Hualien county of Taiwan produced quite different damage scenarios.
The PGA shakemaps were the same for both earthquakes in the epicentral region. It was
only the PGV shakemap that depicted that the earthquake having higher PGV values
caused more destruction. Some other studies hinted that the PGV based shakemaps are
more indicative of the actual disaster area [28] than the distribution of the PGA. Therefore,
to make the maximum utilization of this network in the field of earthquake disaster
prevention and reduction, we have upgraded the present system to plot the additional
shakemaps. These additional shakemaps will benefit significantly the end-users. Right now
after the upgradation, the P-Alert system in addition to PGA shakemaps can provide the
PGV, Sa at different periods, and the CWB Intensity scale shakemaps. The CWB Intensity
scale represents the damage patterns or felt intensity by the human. Also, Sa maps at
different periods (0.1 s, 0.3 s, and 1.0 s), corresponding to different story buildings are
plotted. Sa represents the maximum force experienced by the buildings having a particular
natural vibration period.

This P-Alert system also publishes the earthquake information and the resulting
shakemaps to social media within a few seconds after the earthquake origin. We believe
that with upgradation in the present network, such real-time and needed information is
easily available, and with the help of this information, the disaster relief resources can be
delivered to disaster-hit areas in a fast and appropriate way.

4. 2018 and 2019 Earthquakes

In the eastern part of Taiwan, near Hualien County, two earthquakes having almost the
same magnitude occurred in 2018 and 2019. The CWB rapid-reporting system located the
2018 earthquake 18 km northeast of the Hualien city having ML 6.2. This earthquake caused
the highest fatalities in recent times, most of them from a multi-storied hotel building. The
0.6g PGA corresponding to the CWB Intensity VII was recorded at one or two stations
during this earthquake. The PGA shakemaps during the earthquake were available within
2 min of the occurrence of the earthquake. Another Hualien earthquake having ML 6.3
occurred in 2019, exactly 14 months later of the 2018 earthquake. The CWB rapid-reporting
system, located this earthquake 10 km northwest of Hualien County with a focal depth of
18.8 km. The recorded PGA during this earthquake reached 0.5 g.

The higher PGA values (>0.4 g) were observed at a few stations in the epicentral region
during the 2018 earthquake. The higher PGV values (PGV ≥ 75 cm/s) are expected in the
epicentral region corresponding to higher PGA values (PGA ≥ 0.4 g). However, looking at
the PGV contour map for this earthquake (Figure 2), a small contour of PGV ≥ 49 cm/s
is observed, to the southwest of the epicenter where maximum destruction was caused.
Looking at the other higher PGA values areas (PGA ≥ 0.25g) and seeing the relation
between PGA and PGV values in Taiwan, higher PGV values (PGV ≥ 49 cm/s) are expected
in those areas. However, no such phenomenon was observed but the devastation was
concentrated in an area having higher PGV values (away from the area of higher PGA).
During the 2019 earthquake, the 0.025 g PGA contour spread in a larger area, including
Taipei city (capital region). In Taipei city, PGA values between 0.025–0.08 g were observed
during this earthquake, which corresponds to 5.7–17.0 cm/s PGV contour. The PGA
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contour (0.025–0.08 g) spread in a bigger area but the corresponding PGV contour was
confined in the Taipei area only. Looking at the PGA values in Taipei city, no destruction is
expected. Still, a building in Taipei city leaned against its neighbor after this earthquake,
indicating that PGV may be a better indicator of destruction scenario as compared to
the PGA.
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5. The Shakemap Methodology Upgradation

The present work related to shakemaps upgradation uses the data collected by the
P-Alert network. The research system is based on the Earthworm platform [3,29] that
was initially developed by U.S. Geological Survey (USGS), and several other unique
modules have been developed and integrated into the original platform. The updated
functioning structure of the P-Alert network is described in Figure 3. Following is the
detailed introductions to each module.
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Firstly, the data receiving part includes only one module, palert2ew. It is used as a
server-side program waiting for connections from P-Alert sensors across Taiwan and then
receives the waveform data packets through TCP/IP protocol. Besides, the module can
also be used as a client-side program connecting to the main P-Alert server to request
the waveform data from all online P-Alert sensors. The main process inside this program
is parsing the raw P-Alert packet, and then transforming it to the Trace Buffer format in
the Earthworm platform. Once the data is processed, it is transferred to the first shared
memory, Wave Ring I.

For data in Wave Ring I, two different additional actions are performed in the data
processing part. In the first action, the data is handled by the differential and integral
module, diffint. This module first cooperates with the conversion parameters in the
database to convert integer records into real physical quantities (gal) and then using integral,
convert the original acceleration waveforms into velocity and displacement waveforms.
To avoid the noise-induced drifting, we also apply the high pass filter that is two poles
Butterworth filter at 0.075 Hz corner frequency. Finally, output the results to the next
shared memory (Wave Ring II) in the Earthworm platform. The other action is performed
by the calculation module, spectra. This module calculates the corresponding response
Sa based on the defined period and damping ratio. This process is more complicated
than the previous due to the real-time transformation between acceleration and Sa signal.
Conventionally, the transformation is performed using Fourier transform and Inverse
Fourier transforms but it takes too much time and computing power. Therefore, we use
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another method that is similar to the recursive filter [30]. The detailed equation is as
follows:

Sdi =
1
c1

[
ai × dt2 + 2 × c2 × Sdi−1 − Sdi−2

]
(1)

c1 = 1 + h ×ω0 × dt (2)

c2 = 1 + 2h ×ω0 × dt + (ω 0 × dt)2 (3)

ω0 = 2π/T (4)

The Sdi is the spectral displacement of the ith sample, the ai is the acceleration record
of the ith sample, the dt is the delta time interval between two samples. The h is the
damping ratio that is set to 0.05 as usual. After this recursive processing, we will derive
the spectral displacement record. After applying another double differential, the Sa is
obtained. The output from this module is also transferred to the Wave Ring II. Next,
the scanning module, peakup, scans all of the waveforms including acceleration, velocity,
displacement, and Sa inside the Wave Ring II once per second, corrects the zero offsets,
finds the maximum value of the waveform per second, and finally, outputs the results to
the next shared memory (Peak Ring).

Following is the trigger process part which includes only one module, peak2trig.
This module will collect the peak value information generated by the previous module to
determine whether a possible earthquake event has occurred. Once the triggering stations
reach more than five, it is defined as an earthquake event. The optimum condition for the
triggering station is that the maximum acceleration reaches 0.0015 g in one second, and
the other two stations within 30 km also report 0.0015 g within 6 s. Once triggered, this
module will continue to update the trigger information and output the trigger information
to the shared memory (Trig Ring). A simple linked list data structure is used inside this
module to implement this algorithm. In this way, we can manage the triggered station list
easily such as removing the obsolete triggered station or attaching the incoming triggered
station. To this portion, all the data for generating shakemap are ready.

Then the mapping process part has two main modules. The first module is shakemap,
it will receive the peak value information from the Peak Ring continuously and simulta-
neously detect whether there is trigger information from Trig Ring. Once it is triggered,
the shakemap module will enter the triggered mode and save the peak value of each
station. Also, it will perform the spatial interpolation calculation using inverse distance
weighting [15,31–34] once per second to obtain a reasonable regional shakemap. In ad-
dition to sending the calculation result to the shared memory (Map Ring), it also sends
the output to the local hard disk in a text format for archiving. The second module is the
drawing and publishing module, postshake. It firstly draws the image file (png format)
of regional shakemap according to the data generated by the previous module; once all
required shakemaps are drawn, this module will send the emails with earthquake message
notifications to the address on the list. Also, the message is posted to social media, such as
Facebook, Twitter (started posting on Twitter in October 2020) by calling external scripts
(Figure 4).

6. A Real Example of The 26 July 2020 Earthquake

The upgraded P-Alert system was officially launched in early 2020. Since its operation,
only a few earthquakes with a magnitude greater than 5.5 have occurred and were success-
fully recorded by this network. The functioning of this network is described in terms of
one such earthquake having a magnitude ML 6.2 that occurred on 26 July 2020. During the
testing period at the end of 2019, many earthquakes were recorded; however, they were
included in the testing phase as the system was not officially launched. Like most of the
high magnitude earthquakes in Taiwan, the 26 July 2020 earthquake was located offshore
in the eastern part of Taiwan. As per the CWB rapid-reporting system, the earthquake
having ML 6.2 and depth 53.6 km was located 85 km southeast of Ilan County. It is one of
the few highest magnitude earthquakes that occurred in the periphery of Taiwan after the
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upgradation of the P-Alert network. Although this earthquake did not cause any noticeable
destruction in Taiwan, the P-Alert network initiated and plotted different shakemaps.
The on-site warning by the P-Alert network is initialized once the predefined thresholds set
for warning are exceeded (i.e., Pd ≥ 0.35 cm, PGA ≥ 0.08g). Pd calculation from instruments
is a two-staged process that is followed continuously. A 0.08g PGA value in Taiwan equals
seismic Intensity V as per the old Intensity scale and IV according to the new scale. These
values of PGA, PGV, and Intensity are supposed to cause light damage in the epicentral
region [35].
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The earthquake was deep and very far from the Taiwan boundary and the nearest
station of the P-Alert network is about 60 km far from the epicenter. By the time, the
P-Alert network recorded this earthquake, the PGA values had already attenuated. The
PGA and Pd values recorded by instruments were lower than the predefined thresholds,
so the EEW system was not initialized. The earthquake started at 12:52:29 (UTC) and the
first shakemaps were generated at 12:52:42 just 13 s after the origin time. Then every 30 s,
the P-Alert system generated a series of shakemaps continuously. The stable shakemaps
were first generated at 12:54:12, and then the final shakemaps were available at 12:54:39
with a total triggering of 631 stations (Figure 5). Comparing to the official report from CWB
posted at 12:57:52, we could recognize the damaged area from the detailed shakemaps
much earlier. The P-Alert network shakemaps are in agreement with CWB shakemaps,
emphasizing that the updated network works perfectly. However, the P-Alert network
is quick enough in plotting the real-time shakemaps as compared to the CWB network.
The P-Alert network generated the first report with the triggering of 5 stations after 13 s
of earthquake occurrence (Figure 6). CWB issued the first alert after 24 s and the second
alert after 32 s. P-Alert generated the 2nd report after 43 s and the final shakemaps with
triggering of 631 instruments were available approximately after 130 s.
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(f) shakemaps were posted by CWB at 12:57:52.
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Figure 6. The difference in reporting by P-Alert and CWB network. The first report is generated by the P-Alert network
with the triggering of 5 stations after 13 s of earthquake occurrence. CWB issued the first alert after 24 s and the second
alert after 32 s. P-Alert generated the 2nd report after 43 s and the final shakemaps with triggering of 631 instruments were
available approximately after 130 s.

7. Discussion and Conclusions

The NTU research team started establishing the NTU network in 2010 when the first
P-Alert instrument was installed in the Hualien region of Taiwan. Since then, the team
increased the number of stations by around 50–100 every year and extended the network
to cover most of the Taiwan area. Finally, in 2020, it became a network that consists of over
700 stations with a spacing of around 5 km. Among the similar MEMS-based networks,
the NTU network is unique due to the selection of installation environments. Deploying
P-Alert instruments in elementary schools and educational institutes in Taiwan with proper
logistics including a dedicated network provides an opportunity to densely instrument the
whole Taiwan country and continuously transfer high-quality data to the processing center.
Generally, the instruments are placed on the first (about 77%) or second floors (about 19%)
of the buildings. However, most of the P-Alert instruments are mounted vertically on the
walls, so the measurements may be affected by the soil-building interaction. To compute
the difference in measurements, Wang et al. [36] collected the data from Taiwan Strong
Motion Instrumentation Program (TSMIP) instruments placed close to P-Alerts and found
the difference in values by dividing PGA values recorded by both of them. They found
that the PGA values recorded by the P-Alert instruments placed on the ground floor were
the same as TSMIP instruments and for instruments at the first and second floor they were
1.07 and 1.52 times, respectively. Therefore, the amplified seismic waveforms from P-Alert
instruments installed on a wall of different floors can be adjusted directly using the factor
mentioned above. After removing the building amplifying effect, the hesitation of the
overestimation in shakemaps generated by P-Alert is also eliminated.

In Figure 6, it shows that the NTU network can provide the shakemaps report in
a really short time. The first report came out even faster than the official alert issued
by the CWB. However, in the first report, we can only tell a small area with initial low
shaking which might not be useful for early response, and the next report came out after
30 s. This time interval is adjustable in the system setting. The interval can be reduced
to even once per second. Avoiding over messages on social media, the 30 s interval is
adequate. But, if there are clients who care about the high timeliness, the publish interval
can be adjusted separately. And with such high timeliness, these shakemaps will be able to
provide some other valuable information like rupture directivity of fault [23,26] in addition
to the shaking distribution.

Although the NTU network already becomes a robust and dense network with the
P-Alert instruments, there are still some upgrades that need to be done. To provide more
high-quality waveform data and improve the sensitivity. The advanced P-Alert plus
instruments which belong to Class-B type [9] will be deployed increasingly among the
NTU network in the next few years. Then, the detection ability and data quality of this
network will be much better with the 24-bit data providing.

The P-Alert instrumentation has been proven to be very effective in generating the
various shakemaps and immediately issuing an earthquake early warning to the various
lifeline structures including schools. After the upgradation, the P-Alert system can provide
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the PGV, Sa of various periods, and the CWB Intensity scale shakemaps in addition to
PGA shakemaps. These additional shakemaps will benefit significantly the end-users
which are mainly the disaster management authorities and administrative planners of the
country. The upgradation of the network to generate additional shakemaps will be helpful
to delineate the earthquake-hit areas and to provide help at the earliest to mitigate the
earthquake disaster. The addition of the new instruments regularly and instrumenting
on the known faults ensures that the near-fault properties are captured very precisely
on this network. This leads to this instrumentation always to be ahead in generating
various value-added products to be circulated on social media and delivering them to the
disaster-relief agencies at the earliest using a strong communication system.

The next step is to expand this network on the eastern side of Taiwan where the
mountainous area and the scarcity of the proper logistics pose difficulty in expanding
the network. Though a few instruments have already been added, still, there is room for
many other instruments. In the future, we plan to expand the network and to combine the
resultant shakemaps with several building components related to construction and design
to further generate complete seismic hazard maps for important cities in Taiwan.
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