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Abstract The local magnitude scale ML is defined by
the difference between the observed amplitude (logA)
and the anchored attenuation amplitude (logA0). A
previous study in Taiwan established a model of the
anchored amplitude as a function of the hypocentral
distance R by matching the ML to the corresponding
moment magnitude MW . Although the overall perfor-
mance of the model is adequate, there remain some
drawbacks, namely, the correlated empirical station
correction problem and relatively low sample size. In
this paper, we adopt the concept of the expectation-
maximization (EM) algorithm to develop a new
method that can simultaneously estimate the anchored
amplitude model coefficients and station corrections.
The revised catalog using the latest dataset in Tai-
wan provides an up-to-date accurate estimate of ML.
Additionally, the proposed method can systematically
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obtain statistically meaningful results and be applied
to datasets of other regions in the future.

Keywords Local magnitude · Ground motion ·
Statistical method

Article highlights: A new method that can simul-
taneously estimate attenuation function and sta-
tion corrections is proposed. Based on the new
method, an updated local magnitude has been
established. Using amplitude data in Taiwan, the
updated local magnitude shows better consistency
with the moment magnitude. The station correc-
tions in Taiwan provide an improved assessment of
the geological setting on the island.

1 Introduction

The local magnitude ML was proposed by (Richter
1935) as a way to connect the single station seismo-
gram reading to the overall strength of an earthquake.
Due to its straightforward definition, ML has been
widely adopted by many earthquake monitoring agen-
cies. Although ML tends to suffer from saturation
issues due to its frequency dependence measurement,
some studies (Kanamori and Jennings 1978; Bormann
and Giacomo 2010) suggest that ML can better cap-
ture the near-field radiation energy of seismic waves
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than other measurements and is a suitable indicator of
possible damage.

Originally, ML was defined by the amplitude
measured on a Wood-Anderson torsion seismo-
graph (Richter 1935; Kanamori and Jennings 1978;
Kanamori et al. 1999). They employed a zero-
magnitude earthquake in southern California as an
anchored reference. A zero-magnitude earthquake is
defined as an earthquake that produces a 0.001 mm
peak Wood-Anderson amplitude at a station that is
100 km from the epicenter. ML is derived from the
difference in the logarithmic amplitude of the seismo-
graph and the reference zero magnitude logarithmic
amplitude, that is,

ML = logA − logA0(Δ), (1)

where the amplitude A is measured in millimeters and
Δ denotes the epicentral distance in kilometers. The
anchored reference requires that logA0(Δ = 100) =
−3. In the definition of ML, the logA term can be
derived directly from the seismograms; the reference
term logA0 requires some modeling.

The previous study of ML in Taiwan (Shin 1993;
Wu et al. 2005) extended the definition of ML by
replacing the dependence of the anchor amplitude A0

from the epicentral distance Δ to hypocentral distance
R in kilometeres. They also utilized the observation
that there is a linear relationship between ML and
MW in Taiwan at magnitudes 4 to 6 for shallow
earthquakes. They derived both a refined logA0(R)

attenuation model in terms of R and a new local
magnitude ML that is consistent with MW . By trian-
gling with another reference magnitude (MW in this
case), they managed to escape the immediate tautol-
ogy of a new anchor amplitude model and new local
magnitude.

To summarize the approach in detail, we consider
the definition of logA0 in terms of the given data,

logA0 ≈ logA − MW + Si, (2)

where logA is the recorded amplitude at the station,
MW is the moment magnitude of the event, and Si is
the station correction that accounts for the effect of
the geological setting of station i. In Wu et al. (2005),
this correction was assigned empirically based on the
geological setting of the station. For every trace in
one event, we can derive a logA0 and pair with the
corresponding R. The data pairs of logA0 and R are

utilized to establish a linear model of logA0 in terms
of R:

logA0(R) = A + B · logR, (3)

where A and B are linear model coefficients to
be determined by regression. Note that logA0 and
logA0(R) denote different concepts. logA0 is a num-
ber derived from data, while logA0(R) is a function
of R that estimates logA0 at a different hypocen-
tral distance. Once the attenuation model logA0(R)

is defined, they proceeded to calculate the new local
magnitude,

ML = logA − logA0(R) + Si. (4)

Although this triangle approach with renewed
logA0(R) and ML works well in Taiwan and has been
applied to other regions (Ristau et al. 2016; Rhoades
et al. 2020), it has several issues. The first issue is
the assignment of the station correction Si . This term
was often manually inserted or calculated based on
the empirical interstation difference or inverted all
together (Di Bona 2016). The station corrections are
arguably trivial if they are small enough; however, this
case is not valid in Taiwan. According to Wu et al.
(2005), the station correction ranges from −0.4 to 0.4
magnitude units in Taiwan, which is far from negli-
gible. In addition, the previous two equations, Eqs. 2
and 3, suggest that the station corrections interact with
the linear model coefficients A and B. A change in
one equation will cause a change in the other equation.
This notion motivates us to seek a way to simulta-
neously estimate both the station corrections and the
attenuation model coefficients. We strive to find a new
method that can reasonably disentengle the effects of
station correction and attenuation.

The second issue is the small data size used in
previous model building. In Wu et al. (2005), the
researchers collected 56 events from a network of
79 stations. In past years, there has been a contin-
ual increase in the number of events recorded and the
number of new stations installed in Taiwan, so it is
important to update the logA0 model with the latest
data.

In this paper, we solve these issues using a new
approach that simultaneously estimates two groups of
parameters with the most up-to-date data available in
Taiwan. The key points of this work are presented as
follows:
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– We describe the proposed method inspired by the
expectation-maximization (EM) algorithm (sub-
Section 3.2).

– We show the numerical results of the latest model
and compare them to those of previous studies
(Section 4).

– We discuss the convergence property of the
proposed method and its applicability to other
datasets, even without the given empirical station
corrections (Section 5).

2 Data

The Central Weather Bureau (CWB) provided earth-
quake catalog data from 1990 to 2018. A total of 156
stations were applied to estimate the station correc-
tions, compared to the 79 stations that appeared in Wu
et al. (2005).

We collected shallow earthquakes (depth < 35 km)
with a moment magnitude of approximately 4 to 6
within the Global Centroid Moment Tensor (GCMT)
catalog and found 523 matched events within the
CWB catalog. The total number of records was 62100,
compared to the 56 events and 1898 records in Wu
et al. (2005). All those events were relocated using
a reliable three-dimensional velocity model (Thurber
and Eberthart-Phillips 1999; Wu et al. 2003, 2007,
2008, 2009); therefore, we utilized the location infor-
mation from the relocation as the primary source.

3 Methodology

3.1 The EM algorithm

The EM algorithm was originally designed to conquer
the problem of missing data in maximum likelihood
estimation (Hartley 1958; Dempster et al. 1977). The
algorithm consists of two parts: the E-step and M-
step. The E-step calculates the expectation of the
log-likelihood with respect to missing data. Missing
data are not an unknown random quantity because
the expectation assigns an “average” value to them.
The M-step indicates that the fittest parameters max-
imize the expected log-likelihood. With the updated
parameter, we can proceed to the second round of
the E-step with an updated expectation and then to
the M-step for another parameter update. After a few

rounds of alternating the E-step and M-step, both the
parameters and the missing data will converge to sta-
tistically meaningful results (Neal and Hinton 1998).
In typical cases (when the underlying distribution
obeys exponential family distributions), the converged
parameters coincide with the maximum likelihood
estimation without missing data. For a collection of
modern developments of the EM algorithm, we can
consult (McLachlan and Krishnan 2008).

3.2 Iterative regression

Inspired by the EM algorithm, we propose the iter-
ative regression method to disentangle the station
corrections from the logA0 model parameters by rein-
terpreting station corrections as missing data in EM.
In addition to this change, the iterative regression
method replaces the likelihood function optimization
process with regression because of a significant reduc-
tion in computational cost. Except for the two new
features, the iterative regression closely follows the
EM algorithm. We will now examine the two steps in
iterative regression and their correspondence with the
EM algorithm.

Station Correction Estimation: This step corre-
sponds to the E-step. We estimate the station correc-
tion factor at the (r + 1)-th iteration using the existing
logA0(R) model at the (r)th iteration. The station
correction of station i for one event m reads

S
(r+1)
i,m = MW − logA + logA

(r)
0 (R). (5)

We allocate the station correction factor for the (r +
1)th iteration as the sample mean of the station correc-
tion at different events. Assuming that there are a total
of n events that station i records, the station correction
estimation for the (r + 1)th iteration reads

S
(r+1)
i = S

(r+1)
i,1 + · · · + S

(r+1)
i,n

n
(6)

Regression: This step corresponds to the M-step.
Here, we use linear regression (least squares optimiza-
tion) to obtain the model parameters, which is anal-
ogous to maximum likelihood estimation in the EM
algorithm. Collecting the data pairs (logA0, R) with
the updated station corrections S

(r+1)
i , the updated

logA0 reads

logA0 = logA − MW + S
(r+1)
i . (7)
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By assigning the updated logA0 as the response vari-
able and the hypocentral distance R as the explanatory
variable, we can derive a linear model via regression:

logA0(R) = A + B · R + C · logR. (8)

The result is the (r + 1)th model logA
(r+1)
0 (R). Note

that in this project we use a more general linear model
with three parameters.

After the convergence of both attenuation model
coefficients and station corrections, we adopt the con-
vention of setting the average station correction to
zero. This step can be easily achieved by shifting
the overall station corrections and corresponding A

parameter in the attenuation model.
ML estimation: By several iterations of alternating

the E-step and M-step, the model parameters will con-
verge. Convergence is the end of the EM algorithm,
but one of our final goals is ML estimation. Therefore,
an extra step is required. Assuming that the station
corrections converge to ̂Si and the model of logA0(R)

converges to ̂logA0(R), ML can be estimated as

̂ML = logA − ̂logA0(R) + ̂Si. (9)

Figure 1 shows the flowchart of the iterative regres-
sion. Given a logA0(R) model, the alternating estima-
tion and regression will result in gradually improving
both the station corrections and the model param-
eters. When both estimates converge, we use both
the esimated ̂logA0(R) and ̂Si to derive an accurate
estimation of ML. Note that in Eq. 9, both factors
are estimated from the dataset. Thus, the issue of
empirical station corrections assignment is resolved.

4 Results

In the catalog dataset of Taiwan, there are two differ-
ent types of acceleration amplitude records: a force-
balance accelerometer (FBA) type and short-period
velocity S-13 seismometer (S13) type. The FBA uses
the relative displacement in a feedback loop to apply
a current, while the S-13 is a passive seismometer,
which does not have feedback current features (Col-
lette et al. 2012). While most of the S13 type data
are obtained from the S-13 seismometer, sometimes
the Central Weather Bureau fills in the missing val-
ues with broadband data. The CWB deconvolves the

Fig. 1 Flowchart of the proposed iterative regression algorithm

instrumental response and then convolutes the Wood-
Anderson response to simulate the output of the
Wood-Anderson seismograph.

In theory, the Wood-Anderson seismograph ampli-
tude from the two datasets should coincide, but some
deviations were still observed. These deviations could
be caused by the difference in the instruments. S13 is
a high-gain instrument that focuses on less shaking,
while the FBA is a low-gain instrument that can better
record the larger shaking. The high-gain nature of the
S13 sometimes causes saturation of the waveform; the
CWB discards the data from S13 stations. Due to the
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low-gain nature of the FBA, sometimes it does not reg-
ister at the stations with less shaking. Therefore, the
FBA dataset is not the same as the S13 dataset. Even
considering the same event, at some stations, only the
FBA registers, and vice versa. In addition to this dif-
ference, the mounting of the instrument can also affect
the recorded waveform. FBAs are always mounted
with an anchor, and S13s are often placed on a surface.

Due to the abovementioned instrumental differ-
ence, the FBA dataset and S13 dataset differ. We
present the results of both datasets and compare them.

Figure 2 shows the convergence of the model statis-
tics. The statistics include the residual standard error
(RSE), R2 and standard deviation of one station cor-
rection. We can observe that the fluctuation in the
parameters converges after only a few iterations. We
stopped the process at the fifth iteration because the
updating values became trivial. Fast convergence was
obtained because we employed the model from a

previous study as the starting model. Since the previ-
ous model is passable, the final model is expected to
strongly resemble the starting model.

The final model of the logA0(R) reads

logA0(R) = (−3.857 × 10−1 ± 3.722 × 10−2)

+(−2.646 × 10−3 ± 5.929 × 10−5)R

+(−1.085 ± 2.146 × 10−2) log(R)

R2 = 0.788, RSE = 0.290, (FBA) (10)

logA0(R) = (−4.450 × 10−1 ± 6.157 × 10−2)

+(−3.041 × 10−3 ± 7.393 × 10−5)R

+(−1.134 ± 3.356 × 10−2) log(R)

R2 = 0.753, RSE = 0.358, (S13) (11)

Compared with the model from a previous study,

logA0(R)=2.47×10−1−2.81×10−4R−1.509 log(R).

(12)
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Fig. 2 Figures illustrating regression parameters versus itera-
tions. The figures demonstrate the convergence achieved after
several iterations. a RSE of FBA data. b RSE of S13 data. c

R2 of FBA data. d R2 of S13 data. e Standard deviation of
single-station correction of FBA data. f Standard deviation of
single-station correction of S13 data
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Although the signs of the coefficients are consistent
and the major factor is still the log(R) term, the effect
of the R term in our model substantially increases
its importance. Between the two data types, the FBA
outperforms S13 with a smaller RSE and higher R2.

Figure 3 shows a comparison among the three
attenuation models. The attenuation model of the FBA
shares a tendency that is similar to the attenuation
model of S13. At 100 km, the S13 model is close to
the −3 mark, while the FBA model is similar to the
model of the previous study.

Figure 4 shows the comparison between our esti-
mated ML and the CWB-provided ML with respect to
the moment magnitude MW . Both ML values outper-
form the CWB-provided ML and pass the consistency
check by fitting MW . Additionally, the quantitative
regression indicators demonstrate the same trend:

ML = 1.026MW − 0.196 (FBA)

R2 = 0.696, RSE = 0.275, (FBA) (13)

ML = 0.982MW − 0.088 (S13)

R2 = 0.644, RSE = 0.299, (S13) (14)

ML = 0.937MW − 0.398 (CWB)

R2 = 0.588, RSE = 0.322, (CWB) (15)

Figure 5 shows the statistics of station correction
and the correlation between FBA data and S13 data.
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Fig. 3 Attenuation models. Solid line: FBA attenuation model.
Dashed line: S13 attenuation model. Dotted line: attenuation
model from Wu et al. (2005)

Subfigure (a) shows that the median FBA is closer to
zero than the median S13. Subfigure (b) shows a high
correlation of 0.864 between the two station correc-
tions. In addition to the figure, we report the average
standard deviation of station correction of FBA data
type is 0.287, while the average standard deviation is
0.363 of S13 data type.

Figure 6 shows the spatial distribution of the sta-
tion corrections of both types. Overall, the west side of
Taiwan shows smaller station corrections than the east
side for both types. This tendency is consistent with
both the previous study (Wu et al. 2005) and the gen-
eral geological setting of Taiwan, which is dominated
by rock sites in the east and sedimentary sites in the
west.

5 Discussion

5.1 Convergence property

Although the iterative regression method works very
well with the given Taiwan dataset, the following
question remains: do the results converge in other
datasets or even with the same dataset with more
entries in the future? The answer to this question is
that the results will most likely converge under nor-
mality. To observe this convergence, we must consult
the general convergence theorem of the EM algo-
rithm (Dempster et al. 1977). The general theorem of
EM guarantees that convergence is achieved and that
the convergence parameters coincide with MLE with-
out missing data. The basic notion of the statistics
states that when least-squares optimization (regres-
sion) is performed with an error that is near the
normal distribution, that is, ε ∼ N(0, σ 2), the linear
regression process is equivalent to the maximum like-
lihood function method with the bounded likelihood
function, which is similar to the normal distribution
MLE in the structure (correspondence between MLE
and regression is recorded in many statistical trea-
tises, for example, Hayashi (2011)). For a statistically
meaningful regression, we already assume that the
error satisfies a normal distribution. This normality
makes the general convergence theorem applicable.
Therefore, the iterative regression method converges
if the mild condition of normality holds. If linear
regression works, the iterative regression method will
converge.
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Fig. 4 Figures illustrating the linear relationship between ML and MW . a ML of FBA vs MW . b ML of S13 vs MW . c ML of CWB
vs MW . The shaded areas correspond to the 99 percent confidence interval

5.2 General applicability

In some other regions that do not perform empiri-
cal station corrections, does the proposed method still
apply? The answer is yes. Benefiting from the con-
vergence property of the previously discussed iterative
regression, the estimations are bound to converge to
those of MLE, regardless of the starting model/starting
values. Therefore, we can start the iteration by set-
ting all station corrections to zero, S(0)

i = 0. Based on
this rough estimate, we can derive the primary linear
model of the first iteration, that is, logA

(1)
0 (R). The

corresponding station corrections can be determined

as S
(1)
i . Once the results of the first iteration are

obtained, the next iteration can be calculated following
the procedure of previous iterations. The only down-
side of a worse starting model is a possible longer
computation time because it requires more iterations
to achieve convergence.

5.3 Anchor point mismatch issue

The definition of the anchor point applied in the
original ML associates 100 km as −3. However,
our models at 100 km deviate from this result
(0.3 and 0.4). Superficially, the differences seem to
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Fig. 5 Statistical distribution of station corrections and their
correlation. a Boxplot of the two types of data. b Scatter plot of
the two types of data

indicate an overall deviation in ML, which is not
valid. A major factor of these deviations is the extra
effect from the station corrections. Considering the
station at the anchor point, the original contribu-
tion of − logA0(100) is +3. Moreover, the corre-
sponding expression with the station correction reads
− logA0(100) + Si . An approximate estimation of
the overall station correction around different stations
gives S = E[Si], where we use the expectation of the

empirical distribution to account for the effect (essen-
tially a weighted mean). The numerical results of the
two data types give

− logA0(100) + S = 2.820 + 0.008

= 2.83 (FBA) (16)

− logA0(100) + S = 3.017 − 0.0237

= 2.993 (S13). (17)

Note that after adding the expectation of station cor-
rection, both models are closer to anchor point 3. The
remaining deviations are possibly attributable to the
fluctuations in both the model and the station correc-
tions. The paper (Shin 1993) utilized the S13 dataset
and chose to use an anchor point of 100 km as −3
in Taiwan (compared to Southern California in the
original definition). Comparing (Shin 1993) to our
previously described results, the anchor point setting
in Taiwan using S13 data seems to be a reasonable
choice in hindsight.

5.4 Possible ML/MW scaling failure issue

Some previous studies indicate that for small-
magnitude events, the ratio of ML/MW deviated from
1 to 1.5 (Hanks and Boore 1984; Bethmann et al.
2011). Deichmann (2017) further suggested that the
ratio deviation is due to the attenuation effect that
fixes the amplitude duration. Although similar obser-
vations were not found in Taiwan, some deviations
are expected in the smaller events. The possible con-
sequence of ratio deviation is that the matching pro-
cedure conducted in this study is affected and makes
the smaller ML less accurate. This finding consti-
tutes a limitation of the proposed method in estimating
smaller events.

5.5 Alternative approach

In statistics, the EM algorithm is not the only
method that can account for missing data values.
Another famous approach is Markov chain Monte
Carlo (MCMC) analysis. This approach was originally
developed to work with a strong correlation system
with many molecules (Metropolis et al. 1953; Hast-
ings 1970), where a deviation of position or interaction
of one molecule affects all other molecules. Those
effects are too large to use a perturbation approach.
The idea of MCMC is to adjust pairs of molecules one
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Fig. 6 Spatial distribution of station corrections. a FBA type. b S13 type. c Previous study (Wu et al. 2005)

at a time until thermal equilibrium is achieved. Many
applications exist, in which the use of MCMC is sig-
nificantly simpler than the EM algorithm approach.
Takahashi (2017) surveyed the recent applications of
MCMC for missing data. In this study, we did not
choose the MCMC as our main approach because
(1) the extra formalism employing MCMC is cum-
bersome and (2) the computational power required to
carry out MCMC is greater than that of the proposed
approach.

6 Conclusions

In this paper, we propose a new ML method inspired
by the EM algorithm to simultaneously estimate
both the anchor attenuation linear model and station
corrections.

As a numerical example, we use the proposed
method to re-estimate ML of Taiwan and find that the
result achieves a better fit than the previous model.
Additionally, the estimated station corrections show
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a tendency that is similar to tendencies in previous
studies and the geological setting in Taiwan.

In addition, we discuss the convergence property of
the method and its general applicability. We expect the
proposed method to routinely support future ML and
station correction estimation. Furthermore, the corre-
sponding updated Taiwan ML catalog is expected to
provide better accuracy of the seismic release energy
for future studies.
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