
1. Introduction
Ambient noise interferometry has been widely used to detect seismic velocity changes (dv/v) in response 
to internal crustal processes, such as volcanic unrests (Brenguier, Shapiro, et al., 2008; Feng et al., 2020; 
Obermann, Planès, Larose, & Campillo, 2013; Olivier et al., 2019), fault zone damage and healing (Bren-
guier, Campillo, et al., 2008; Hillers et al., 2019; Liu et al., 2018; Obermann et al., 2014; Viens et al., 2018; 
Wang et  al.,  2019; Wegler & Sens-Schönfelder,  2007; Yu & Hung,  2012), basin water storage (Berbellini 
et al., 2021; Clements & Denolle, 2018; Lecocq et al., 2017), and ice sheet loading/melting dynamics (Mor-
dret et  al.,  2016). Such seismic velocity variations are also known to be complex since they could orig-
inate from multiple concurrent causes including external environmental forces. For instance, dv/v has 
been found to correlate with precipitation, groundwater level, atmospheric pressure, temperature, snow 
depth, and tidal height (Andajani et al., 2020; Clements & Denolle, 2018; Donaldson et al., 2019; Hillers 
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et al., 2014, 2015; Mao et al., 2019; Richter et al., 2014; Sens-Schönfelder & Wegler, 2006; Wang et al., 2017). 
Environmental-induced periodic dv/v signals observed in northern Chile (Richter et al., 2014), Germany 
(Lecocq et al., 2017), Japan (Wang et al., 2017), Iceland (Donaldson et al., 2019), the central United States 
(Liu et al., 2020), and other regions have shown different controlling factors varying from place to place 
and complicated the interpretations of dv/v for internal changes of the crust. Thus, understanding and dif-
ferentiating the interplay of internal (e.g., magmatic, tectonic) and external (e.g., environmental) processes 
in dv/v variations is an important step toward not only more accurate crustal monitoring but also finding 
hidden signals. For a more comprehensive discussion, we refer readers to a recent review of Le Breton 
et al. (2021).

As an active orogenic belt in the subtropical zone, Taiwan is one of few places in the world that features 
strong interactions of environmental and tectonic processes with high seismicity rate and distinct dry and 
wet seasons (Hsu et al., 2021; Steer et al., 2020). Yu and Hung (2012) investigated the coseismic velocity 
changes associated with the 2006 Taitung earthquake in southeastern Taiwan and found negative correla-
tions between rainfall, groundwater level variations, and dv/v, in addition to the coseismic velocity drop. 
Using the borehole array of the Taiwan Chelungpu-fault Drilling Project (TCDP) data, Hillers et al. (2014) 
found that the hydraulic properties play a governing role of dv/v variations. However, an island-wide and 
systematic analysis is still lacking. However, an island-wide and systematic analysis is still lacking. More 
than two decades of data recorded by the Broadband Array in Taiwan for Seismology (BATS; Institute of 
Earth Sciences, Academia Sinica, 1996) provide a great opportunity to investigate the long-term dv/v varia-
tions in the crust across Taiwan (Figure 1a).

In this study, we apply a single-station cross-components (SC) analysis to continuous BATS seismic record-
ings from 1998 to 2019. We observe a clear co-seismic velocity drop associated with the 1999 Mw 7.6 Chi-
Chi earthquake and strong periodic variations of dv/v at most stations (Figures 1b–1e). To investigate the 
causes of dv/v periodicity, we conduct comparative analyses in the frequency and time domains between the 
dv/v variations and the environmental data from nearby weather stations including rainfall, temperature, 
air pressure, and wind speed (Figure 1a). We also model the rainfall-induced pore pressure changes and 
groundwater level to investigate the hydrological process in the shallow crust. The results suggest a pre-
dominant role of rainfall in causing dv/v variations across Taiwan. The modeled pore pressure changes well 
predict the main trends of the dv/v (with high correlation coefficients around 0.6–0.8) for most stations in 
the foothill and mountainous areas and reflect a diffusion process from meteoric water into shallow crust. 
By correcting rainfall effects from dv/v, we improve the detection capability of the internal tectonic process-
es associated with earthquakes.

2. Materials and Methods
2.1. Seismic Data and Ambient Noise Interferometry

We analyze the three-component continuous data in 1998–2019 from 15 broadband seismic stations of the 
BATS network, which are selected to be uniformly distributed across Taiwan (Figure 1a, blue triangles). 
The data completeness is shown in Figure S1. We closely follow the processing procedure described in Feng 
et al. (2020) which cuts the continuous data into daily subsets, removes instrumental response, demeans, 
detrends, tapers, and decimates the data to 20 Hz. The spectral whitening (Bensen et al., 2007) and Welch's 
method (Seats et al., 2012) which uses 5-min moving time windows with 50% overlaps are applied to com-
pute 150-s time lag correlation functions. The main difference of our work from Feng et al. (2020) is that we 
focus on single station cross-component correlations (that include ZN, ZE,NZ, NE, EZ, and EN) rather than 
station pair cross correlations (CC) because it is more straightforward and accurate for comparing it to data 
from nearby weather stations. The SC has also been demonstrated to be more stable than the autocorrela-
tion (AC) method (De Plaen et al., 2016; Donaldson et al., 2019; Hobiger et al., 2014).

After computing daily SC functions (SCFs), we then applied a 30-day backward stacking for each day to gain 
better signal-to-noise ratios (SNR) and coherence between SCFs (Figure 2). A reference SCF is constructed 
by stacking all available SCFs over the entire study period. The time shifts (dt/t) in windowed coda waves 
between daily SCFs and the reference SCF are then measured to infer the average seismic velocity changes 
(dv/v) of the medium around that station via the equation (Snieder et al., 2002):

Writing – review & editing: Hsin-
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 / / .dt t dv v (1)

To determine the optimal length of the coda time window, we filter the SCFs to 0.1–0.9 Hz and compute the 
moving window cross-correlation over the entire 150-s time lag between daily SCFs and the reference SCF 
using a 20-s window with 1-s moving step. The results show that the correlation coefficient values become 
lower than 0.8 when the lag time is greater than 60 s for most stations (Figure S2). Therefore, we use a 50-s 
coda window that begins at 10 s of the lag time to avoid the first wavelength of the large source wavelet 
centered at zero time (Figure 2).

We use both the stretching method (Sens-Schönfelder & Wegler, 2006) and the moving-window cross-spec-
trum method (MWCS, Clarke et al., 2011) to calculate and cross-validate the dv/v measurements. While the 
stretching method was known to be affected by the change of frequency content in ambient noise (Zhan 
et al., 2013), estimates of dv/v are similar to but more stable than those measured by the MWCS in general 
(Figure S3). We therefore use the stretching dv/v measurements for later analysis.

Based on a theoretical formulation of the apparent stretching factor (Weaver et al., 2011), we also calculate 
the uncertainty of the estimated dv/v for each component combination. The uncertainties are then used to 
compute a weighted average of dv/v at all six component combinations to form the final dv/v results. When 
averaging, only the dv/v results with a cross-correlation value greater than 0.6 (from stretching method) are 
used.

Figure 1. Station distribution and time series of seismic velocity changes (dv/v). (a) Distribution of seismic stations (reversed triangles) and selected weather 
stations for Gaussian smoothing analysis (yellow dots). Red lines mark the active faults defined by the Central Geology Survey, Taiwan. The stars represent 
the hypocenter location of the 1999 Chi-Chi (Mw 7.6), 2003 Chengkung (Mw 6.8), 2006 Taitung (Mw 6.4), and 2018 Hualien (Mw 6.4) earthquakes. (b–e) The 
temporal evolutions of dv/v at Station NACB, TDCB, SSLB, and TWGB selected for illustration. The blue lines mark the occurrence time of earthquakes as 
indicated by starts in (a).
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Figure 2. An example of cross-component correlations of single station (SC) at Station SSLB. The black boxes denote the coda windows used for dv/v 
measuring. Different cross-component correlation functions are normalized by the peak amplitude of their reference correlation functions (RCF), respectively.
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2.2. Depth Sensitivity Kernels

In a multiple scattering regime, the wave propagation acts like a random walk process and can be described 
by a diffusion equation (Pacheco & Snieder,  2005; Planès et  al.,  2014). On the assumption that the ear-
ly coda waves are dominated by surface waves (Obermann, Planes, Larose, Sens-Schönfelder, et al., 2013; 
Obermann et al., 2016), we assume that the coda is mainly composed of Rayleigh wave energy and calculate 
the depth sensitivity kernels of frequency bands between 0.1 and 0.9 Hz (Herrmann, 1987). This Rayleigh 
wave sensitivity to the depth of the velocity perturbation, while has often been assumed, was also validated 
recently in a numerical work of Yuan et al. (2021). Given a 1-D velocity model averaged from a recent local 
3-D velocity model (Huang et al., 2014), the calculated Rayleigh wave sensitivity kernels for different fre-
quencies are shown in Figure S4. The frequency band of 0.1–0.9 Hz used in this study is mostly sensitive to 
the medium changes from the surface to the depth of about 3 km.

2.3. Weather Data and Data Processing

Figure S5a shows the distribution of the weather stations operated by the Central Weather Bureau (CWB) 
in Taiwan. The weather stations provide the hourly data of rainfall, air pressure, air temperature, and wind 
speed. We convert these hourly weather data to daily data. For rainfall, we calculate the cumulative rainfall 
each day. For the other three, we calculate the daily average.

Since the multiply scattering coda waves sample a finite volume of the medium, we calculate their lateral 
sensitivity to be 10.7 km based on the first Fresnel zone assumption (Bennington et al., 2018). The weather 
stations within a radius of 10.7 km of each seismic station are selected. We then apply spatial Gaussian 
smoothing (with a standard deviation of 10.7 km) to the selected stations to obtain averaged weather data to 
compare with the dv/v measurements. Figure 1 shows the locations of the selected weather stations (yellow 
circles) for each seismic station (blue triangles). Note that not all the weather stations have all four types 
of data throughout the entire study period, and rainfall data is usually the most complete one among them 
all (Figure 3).

3. Results and Analysis
3.1. Seasonal Variations of dv/v and Weather Data

The strong periodic dv/v variations are perceived at most stations over the entire period from 1998 to 2019 
(Figures 1b–1e). The peak-to-peak amplitude of periodic dv/v variations ranges from 0.02% to 0.2% (Fig-
ure S6), which is roughly consistent with the dv/v range of 0.01%–0.1% for the frequency band of 0.1–1 Hz 
in Le Breton et al. (2021). The time series of dv/v and weather data consistently have periodic cycles like in 
the example shown by Station MASB (Figure 3). We convert the time series data into normalized spectra to 
investigate their dominant periods (Figure 4). In the spectrum, the strongest signal appears at a cycle of one 
year in the observed dv/v and all weather data. Relatively broader bandwidth of temperature, air pressure, 
and wind speed in the spectrum is due to shorter periods of data available (Figures 3c–3e). The rain-related 
Madden-Julian Oscillation (MJO) signals around 60–80  days, as found at TCDP borehole array (Hillers 
et al., 2014), appear in the rainfall records at some stations (e.g., Station NACB, TDCB, WFSB) but do not 
reflect on our dv/v time series. The 30-day-long stacking may likely mute possible MJO-related dv/v signals 
to some degree. However, the exact reason the MJO footprint is not reflecting on dv/v is beyond the scope 
of this study. While a semiannual cycle could also be observed in dv/v and rainfall, we focus our discussion 
mainly on annual signals (Figure 3).

Since all the weather factors exhibit annual cycles, we perform an annual stack for all the data to compare 
their behavior for an average year (Figure 5). A 30-day low-pass filtering is applied to remove short-wave-
length disturbances (light-color thin curves) and only retain the primary long-wavelength features (dark-
color thick curves) before stacking. In Figure 5, we select four representative stations MASB, NACB, TDCB, 
and WFSB for the southern, eastern, central, and northern regions of Taiwan, respectively. Each subplot of 
Figure 5 includes the annual stacks of normalized dv/v (black), rainfall (blue), temperature (orange), air 
pressure (purple), and wind speed (green). Notably, the annual dv/v variations show strong site-dependent 
features. At the station MASB, the dv/v first increases from January to May, then drops to the lowest level in 
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September, and finally increases from October to December. At the station NACB, the trend of dv/v is sim-
ilar to the station MASB, but the lowest value of dv/v occurs in late October. At the station TDCB, the dv/v 
first shows a decreasing trend from late January to July, then drops to a minimum in July, and finally in-
creases toward winter. At the station WFSB, the temporal pattern of dv/v is almost opposite to that in TDCB, 
the dv/v gradually increases in January to May at first, then attains its highest value in May to August, and 
finally decreases toward winter.

In contrast, the annual variations of temperature and air pressure are similar across four stations, although 
with different amplitudes. Annual stacked temperature shows an increasing trend in the first half year, 
followed by a decreasing trend in the second half year with a peak-to-peak amplitude of 14°C. Air pressure 
exhibits an opposite temporal pattern to temperature and the annual peak-to-peak amplitude is less than 
16 hPa. Because the wind speed changes could also interact with local topography and modulate the noise 
wavefield locally to cause spurious dv/v signals (Hillers & Ben-Zion, 2011; Hillers et al., 2015), we also com-
pare the wind speed with dv/v. There is considerable diversity in the temporal patterns of annually stacked 

Figure 3. An example of dv/v time series at Station MASB and weather data averaged from the adjacent sites. (a) The dv/v with color-coded errors, (b) rainfall, 
(c) temperature, (d) air pressure, and (e) wind speed.
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wind speed data with the amplitudes ranging from 0.1 to 0.5 m/s, but no 
consistent correlation with dv/v is found. The rainfall also shows different 
annual patterns across stations. A clear dry-rainy season is shown at two 
stations MASB and NACB, with the dry season in winter and spring and 
the rainy season in summer and autumn. The dv/v of these two stations 
mainly decrease and increase when rainfall begins and stops, respectively 
(black and blue curves). At the station TDCB, rainfall distributes more 
uniformly throughout the year compared to the aforementioned two 
stations with the dv/v dropping to a minimum after the primary rainy 
season. In northern Taiwan, the rainfall pattern is different from other 
places of Taiwan, as indicated by the data at the station WFSB, whereas 
the decline of dv/v in November can be observed after the rainy season 
in wintertime.

3.2. Effect of Rainfall-Induced Pore Pressure Changes on Seismic 
Velocity Variations

The qualitative match seen between the dv/v and the rainy season sug-
gests a possible influence of rainfall. Rainfall-induced pore pressure 
changes rather than rainfall itself have been suggested to cause the seis-
mic velocity variations in many places (Andajani et al., 2020; Donaldson 
et al., 2019; Liu et al., 2020; Rivet et al., 2015; Wang et al., 2017). There-
fore, we use a one-dimensional fully coupled diffusion equation (Talwani 
et  al.,  2007) to compute the pore pressure changes. The pore pressure 
change, P(r, t), can be expressed as a function of diffusion distance (r) and 
time (t) from daily precipitation pi at the surface and at day t:

P r t p erfc
r

c n i t
i
n

i, ,/   
  











1 1 2
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where n indicates the number of time increments δt from the day of the 
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fective depth corresponding to the peak of sensitivity kernels as ∼2 km 
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To avoid possible bias due to coseismic dv/v drops and subsequent recovery trends during the grid search 
(Figures 1d and 1e), the fitting only uses the data within a certain time period without clear earthquake-in-
duced signals (Figure S7). The sought out diffusion rate is then used to calculate the pore pressure changes 
and the predicted dv/v for the entire time period. Figure S7 demonstrates how we estimate the predicted 
dv/v from rainfall at Station NACB. Using the Gaussian smoothed rainfall record as an input, we obtain 
a diffusion rate of ∼1  m2/s and a correlation coefficient value of ∼0.8. We note that changing different 

Figure 4. Examples of the normalized spectrum at the stations (a) MASB, 
(b) NACB, (c) TDCB, and (d) WFSB. From top to bottom are the observed 
dv/v, rainfall, air temperature changes, air pressure changes, and wind 
speed changes. Black and gray triangles mark the period of one and half 
year. The Madden–Julian Oscillation (MJO) of 60–80 days cycles is marked 
by an open triangle (Hillers et al., 2014).
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timeperiods gives similar results in general (Figure S7). According to the correlation coefficients, the pre-
dicted dv/v could overall explain 60%–80% of the dv/v variations for most stations (Figures S7 and S8). The 
cross-correlation coefficient (CC) and corresponding time shift (dT) between the long-term time series of 
dv/v and all other environmental data (with 30-day low-pass filtering) for each station are also calculated 
in Table S2. Similar to Figure 5, we show the comparison of annual stacks between the observed dv/v and 
the predicted dv/v derived from rainfall-induced pore pressure changes at the four representative stations 
in Figure 6.

3.3. Coseismic dv/v Drops Related to Regional Earthquakes

In addition to the strong periodic signals, clear coseismic drops followed by a long increasing trend in dv/v 
are also observed and most pronounced at Station SSLB (Figures  1b–1e). We confirm with the weather 
data near Station SSLB that this trend is not related to any long-term environmental changes (Figure S9) 
and mainly represents the post-seismic relaxation process of the 1999 Chi-Chi earthquake (the red star in 
Figure 1) as investigated by Tang et al. (2019) and observed for many earthquakes (Hobiger et al., 2012; Qiu 
et al., 2020; Wegler & Sens-Schönfelder, 2007). The largest dv/v drop of −0.6% (from 0.4% to −0.2%) related 
to the 1999 Mw 7.6 Chi-Chi earthquake is observed at Station SSLB which is closest to the rupture zone. This 
value is compatible with and among the high values of other coseismic dv/v observations of M > 6 earth-
quakes (Liu et al., 2018). Note that different preprocessing, coda window length for measuring, and spatial 
and temporal averaging may also affect the results. The coseismic dv/v drop and subsequent recovery are 
also observed at distant stations but greatly masked by periodic dv/v variations (e.g., Station NACB). We also 
find other plausible coseismic dv/v drops related to the 2003 Mw 6.8 Chengkung earthquake (purple star), 
the 2006 Mw 6.4 Taitung earthquake (green star), and the 2018 Mw 6.4 Hualien earthquake (blue star) but 
they are less pronounced than the 1999 Mw 7.6 Chi-Chi earthquake due to relatively small coseismic drops 
and large periodic variations in dv/v.

Figure 5. The year-average examples of the (a) Station MASB in southern Taiwan, (b) Station NACB in eastern Taiwan, (c) Station TDCB in central Taiwan, 
and (d) Station WFSB in northern Taiwan. Each subplot has the normalized-dv/v in black and the corresponding rainfall (blue), changes of temperature 
(orange), air pressure (purple), and wind speed (green) changes.
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4. Discussion
4.1. Predominant Factor Driving the Seasonal Velocity Variations

We normalize and color code the annual stacks of dv/v, environmental data, and calculate pore pressure 
changes at all stations in Figure 7. It is clearer that the temporal variations of temperature and air pressure 
are similar across Taiwan (Figures 7c and 7f) and inconsistent with the site-dependent characteristics ob-
served in dv/v (Figure 7a). The variations of wind speed (and therefore the induced local noise wavefields) 
are site-dependent (Figure 7b) but more complex than the dv/v variations with small-scale fluctuations. 
Alternatively, the site-dependent rainfall patterns (Figure  7e) not only fit with the dv/v decline periods 
qualitatively (Figures 5 and 7a); but through the pore pressure change modeling (Figure 7d), their modeled 
dv/v also captures the first-order features of the observed dv/v remarkably (Figure 7g). From correlations 
between the dv/v with different factors (Table S2), the rainfall-induced pore pressure change is also the one 
that could fit most of the stations simultaneously with overall high CC (mostly above 0.5) values, and there-
fore seems to play a predominant role of the seasonal dv/v variations in Taiwan.

Previous studies have found multiple factors influencing seismic velocity changes worldwide. Wang 
et al. (2017) observed a combination of effects from pore pressure, snow thickness, and sea-level changes 
on the seasonal variations of dv/v from region to region throughout Japan. Donaldson et al. (2019) analyzed 
a decade-long dv/v in the northern volcanic zones of Iceland and found that seasonal dv/v cycles reflect 
the elastic responses of the loads of snow, air pressure, and groundwater. Liu et al. (2020) investigated the 
temporal evolution of dv/v in the Mississippi embayment and found that seasonal dv/v correlate primarily 
with groundwater level variations. The residual dv/v variations further correlate with the air pressure in the 
short term and with temperature in the long term after removing the groundwater effect. We also investigate 
the residual dv/v variations by removing the dv/v from the rainfall effect but find no significant correlations 
with other factors on a regional scale (Figures 7i, S10b, and S10d). Temperature seems to take some effect 
but locally at the WARB station (correlation coefficients 0.57) in eastern Taiwan (Figure S10a).

Seasonal variations of noise sources are one of the common concerns causing spurious seasonal dv/v varia-
tions (Zhan et al., 2013). We note the noise sources here mainly refer to the ocean microseism (considering 
the 0.1–0.9 Hz frequency band) and should distinguish itself from wind-induced noise (Hillers et al., 2015). 

Figure 6. Annual stacks of the observed (black), predicted (blue) dv/v, and rainfall (dark blue) at four stations shown 
in Figure 4.
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Liu et al. (2020) found that the decrease of noise amplitude can induce a small increase in dv/v in the Mis-
sissippi Embayment but the level of noise-induced dv/v variations is much less than that caused by pore 
pressure changes in the crust and sediments. To examine the possible bias from the noise variations, we also 
calculate the root mean square (RMS) of the noise amplitude of three components within the frequency 
band of 0.1–0.9 Hz (Figure S10). The annual stacks of the noise amplitude RMS generally show high-energy 
noise (warm color) during winter and low energy noise (cold color) during summer (Figure 7h). Since Tai-
wan is a relatively small island, it is reasonable to observe coherent spatial variations related to the dry and 
wet seasons across the entire island. While the noise amplitude does vary seasonally, the relatively uniform 
pattern across most stations is not in phase with either the observed dv/v or the residual dv/v variations in 
general (Figures 7a and 7i). A slightly negative correlation might be found locally for some stations, such 

Figure 7. Normalized annual stacks at all stations. (a) Observed dv/v. (b) Wind speed change. (c) Temperature 
change. (d) Rainfall induced pore pressure change. (c) Rainfall change. (f) Air pressure change. (g) Predicted dv/v via 
the calculation in Section 3.2. (h) The root-mean-square of the noise amplitude. (i) The residual dv/v estimated by 
correcting the rainfall-induced dv/v from observations.
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as at Station WARB where the correlation coefficient is −0.36 (Figure S10a). Its effect on dv/v, if exists, is 
likely secondary.

4.2. Groundwater Modeling and the Hydrological Model

The high correlation between the dv/v variations and rainfall-induced pore pressure changes implies a ver-
tically efficient hydrological process that allows the rainfall to infiltrate into shallow crust. To verify this 
condition, we model the temporal evolution of groundwater level using the rainfall data at the 10 select-
ed sites where the groundwater station and weather station are nearly collocated (the yellow circles and 
green squares in Figure S11). Except the station in the Puli basin, all the station pairs are within 1 km 
(Table S1). We model the groundwater level (GWL) using the equation proposed by Sens-Schönfelder and 
Wegler (2006)

      


 
  0 0GWL GWL ,a t tn i ni

i n
p t

t e (5)

where φ is porosity, a is the parameter describing the decay, GWL0 is the asymptotic water level, and p(tn) 
denotes the daily precipitation. The results show excellent fits of groundwater variations in the foothill and 
mountainous regions (correlation coefficients greater than 0.9) but poor fits in plain areas such as in the 
Taipei basin and Tainan plain (Figure S11). Due to the cover of thick sediments in plain and basin areas, the 
recharge of groundwater is likely from upstream and laterally at depths (Hsu, Fu, et al., 2020). In contrast, 
the good fits with time shifts within one day suggest an effective and rapid vertical/subvertical infiltration 
process in the mountainous and foothill areas. The active deformation in fold-and-thrust belts in the west-
ern foothills and extensive shallow normal-faulting activity in the mountain ranges may produce fractures 
and allow effective fluid infiltration (Hsu et al., 2009; Wu et al., 2008). Spatially, we also obtain worse fits be-
tween dv/v and rainfall-induced pore pressure changes (cross-correlations coefficient <0.6) for the stations 
in the plain and basin-edge areas (e.g., RLNB and ANPB) and better fits for the stations in the mountainous 
areas (cross-correlation coefficient >0.6) shown in Figure 8a. The fits for the basin/plain site stations are 
likely due to the undrained regime where groundwater levels can be maintained by human activities such 
as reservoirs, groundwater management, and agriculture/irrigation.

Among all the data, there is one seismic station (MASB) near groundwater and weather stations (Figure 9a), 
offering a good opportunity to confirm the relationships between dv/v, rainfall, and groundwater variations. 
Figure  9b shows significant similarities between the time series of dv/v with the observed groundwater 
level, and dv/v with the modeled pore-pressure changes from rainfall. The negative correlation between the 
dv/v and the groundwater level indicates that a rise of groundwater increases the pore pressure in the satu-
rated medium below and then decreases the seismic velocities (Clements & Denolle, 2018; Grêt et al., 2006; 
Vidal et al., 2021). While groundwater recharge from rainfall depends on infiltration capacity, soil type, 
vegetation, and topography, the satisfactory fit through our groundwater modeling (Equation 5) suggests 
a relatively intimately linked hydrologic system in the shallow crust of the foothill and mountain areas in 
Taiwan. Since there are generally no groundwater stations in the mountainous areas (Figure S5b), the rain-
fall could be used as a good proxy to calculate the pore pressure changes and correlate with dv/v variations 
(Figures 7 and 9).

Our study suggests that the observed seasonal dv/v variations (Figure 1) are dominantly due to pore pres-
sure diffusion. As shown in Figure 10, when there is no rainfall (Period A), the seismic velocity changes 
are due to the state changes of pore pressure caused by groundwater level variations. When rainfall season 
begins (Period B), sufficient amounts of water infiltrates and percolates downward into the groundwater 
system through the fractured uppermost crust (Figure S11). In Period C, once the groundwater rises, the 
diffusion front starts to propagate downward and pore pressure change reach its peak when the seismic 
velocity drops to its minimum (Figures  6 and  7). When the groundwater level gradually returns to the 
background (Period A), the pore pressure reduces and the seismic velocity then recovers. We further ex-
amine this idea utilizing the lapse-time-dependence test (Obermann et al., 2016; Qiu et al., 2020) with four 
20-sec-long coda windows from 10 to 60 s lag time. As shown in Figure S12, the results show that the dv/v 
variations have similar amplitudes for most stations, although the later windows temporally show slightly 
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weaker or slightly stronger amplitudes (Figures S12a–S12c). This indicates that the medium changes are 
at least not very near surface (e.g., groundwater variations) as we proposed. In contrast, the RLNB station 
shows much stronger variations at early coda. This corroborates that stations at the plain/basin areas with 
thicker sediments are subject to more complex hydrological processes (Figure S12d). Other environmental 
factors such as temperature, air pressure, and wind speed can have an effect but they seem to secondary or 
below the dv/v uncertainty to measure in Taiwan at an annual scale.

Figure 8. Spatial distribution of (a) the correlation coefficients (Cmax) between the observed and predicted dv/v and (b) corresponding diffusion rate at which 
Cmax > 0.6. The geological units in (b) from west to east are the Coastal Plain (CP): alluvial sediments; Western Foothills (WF): thick sequence of shallow marine 
to shelf clastic sediments; Hsueshan Range (HR): slate belt with widespread meta-sandstone; Western Central Range (WCR): slate belt with higher grade of 
metamorphism; Eastern Central Range (ECR): Metamorphic complex composed of schist, marble, and gneiss; Coastal Range (CoR): northern extension of the 
Luzon volcanic arc; and Tatun Volcano group (TV): postcollision extensional volcanism (Ho, 1986).
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4.3. Spatial Distribution of Diffusivity

Fitting the observed dv/v with rainfall-induced pore pressure change provides the diffusivity estimates 
(Figure S7). As discussed in the previous section, the presence of thick sediments and lateral hydrological 
processes in the basin/plain areas degrade the fitting for ANPB and RLNB stations. Therefore, we only plot 
the diffusion rate for the stations with high correlation coefficients above 0.6 (Figure 8b). The estimates 

of diffusivity fall reasonably in the range of 0.1–10 m2/s as reported in 
previous studies (Hsu, Huang, et al., 2020; Talwani et al., 2007). Using 
a similar approach in the same 0.1–0.9  Hz frequency band, Andajani 
et al. (2020) estimated diffusion rates ranging from 0.02 to 1.0 m2/s for 
the Chugoku and Shikoku regions in southwestern Japan. They found 
that the correlations between the pore pressure changes and dv/v differ 
between locations, with clear correlations observed at the stations in 
granitic regions but not in the steep mountain areas. In this study, most 
of the stations sit in the areas of sedimentary and low-grade metamor-
phic rocks (e.g., sandy shale, siltstone, slate, and meta-sandstone) except 
for Station NACB and YULB which are located at areas with high-grade 
metamorphic rocks (marble, and black schist). No apparent relationship 
between the lithology and diffusivity is observed from our analysis. This, 
however, does not preclude a possible relationship with lithology when 
analyzing the dv/v at higher frequency bands (e.g., 1–20 Hz) as found in 
Viens et al. (2018) in the greater Tokyo area of Japan.

The lack of correlation between the pore pressure changes and dv/v in 
the deep mountain areas in Andajani et al. (2020) also seems contradic-
tory to our observations, where the good correlations appear mainly at 
the stations in the foothill and mountain areas. We believe both observa-
tions can be explained from fracture development controlled by different 
lithology and tectonic activity. The active deformation in the fold-and-
thrust belts and extension revealed by quartz veins (Chan et al., 2005) 
and normal-faulting events (Hsu et al., 2009) in the Central Range likely 

Figure 9. An example of groundwater modeling for Station MASB. (a) Station locations of seismic (black triangle), weather (blue circle), and groundwater 
stations (green square). (b) Time evolution of dv/v (top), observed and modeled groundwater levels (middle), rainfall, and rainfall-induced pore pressure 
changes (bottom). The red dashed curve shows the time period used for groundwater modeling.

Figure 10. Hypothetical model of the crustal seismic velocity responses 
in Taiwan. The time series of dv/v and rainfall-induced pore pressure 
change (PPC) shown on the top subplot with three periods A–C (top). 
The open blue arrow indicates rainfall infiltration into the bedrock. The 
thick black arrow indicates changes in groundwater level. The blue curvy 
arrows represent the pore pressure diffusion driven by the rapid rise of 
groundwater level after rainfall.
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produced fractures that allow effective fluid infiltration in the shallow crust. A relatively smaller hydrau-
lic diffusivity c (<1 m2/s) is found in eastern Taiwan and suggests a longer delay between the rainfall and 
pore pressure changes. This distinct hydraulic property may be a consequence of different tectonic settings 
between the east and the west. The analysis demonstrates a potential for seismology to infer hydraulic prop-
erties of the shallow crust without well data (Clements & Denolle, 2018; Vidal et al., 2021).

4.4. Improving Detection Capability of Coseismic dv/v Drops

By ambient noise interferometry, understanding and correcting the external effect from the dv/v variations 
is an important step toward monitoring internal crustal processes (Donaldson et al., 2019; Rivet et al., 2015; 
Wang et al., 2017). There are two frequently used methods to correct the seasonal periodicity in dv/v var-
iations. One is based on the empirical transfer functions from actual weather data as was done by Rivet 
et al. (2015) and Wang et al. (2017). The other is a curve-fitting approach as in Hobiger et al. (2012) and Qiu 
et al. (2020). While seasonal/periodic signals may be corrected by curve-fitting approaches that consider 
multiple basis functions, we demonstrate a few cases here to address the advantage and necessity of using 
rainfall data for more realistic correction. Figure 11 shows the dv/v variations before and after the correction 
for selected stations, marked with the occurrence times of moderate-to-large earthquakes. Taking Station 
NACB as an example, the shape of the dv/v drop associated with the 1999 Mw 7.6 Chi-Chi earthquake 
is actually indistinguishable from the rainfall-induced annual dv/v drops. However, after correcting the 
rainfall-induced pore pressure effect, the coseismic velocity drops clearly stand out for the 1999 Mw 7.6 
Chi-Chi earthquake and also for the 2018 Mw 6.4 Hualien earthquake. Another good example is Station 
TWGB, which shows less pronounced seasonal dv/v variations but four clear coseismic-like dv/v drops. 

Figure 11. The time series of dv/v before (left) and after (right) correcting the rainfall-induced dv/v changes. Station locations are referred to Figure 1. The 
blue lines mark the occurrence time of earthquakes in Figure 1a with clear (solid) and unclear (dashed) coseismic offsets. The black dashed lines mark the 
occurrence time for all earthquakes with M > 6 and depths <30 km in Taiwan. Earthquake locations are shown in Figure S14.
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The timing of the first three co-seismic dv/v drops correspond to the 1999 Mw 7.6 Chi-Chi earthquake, 2003 
Mw 6.8 Chengkung earthquake, and 2006 Mw 6.4 Taitung earthquake, respectively. But for the fourth drop, 
while the timing seems to be close to one offshore moderate earthquake (Event 15 in Figure S13), it can be 
removed after correcting for the rainfall related signal during Typhoon Meranti in 2016. The correction is 
only implemented after 2012 because the nearby weather station was installed then. For the station such as 
SSLB that shows a clear co-seismic dv/v drop before correction, correcting external effects is still beneficial 
for better assessing seismic velocity recovery and healing rate that could provide valuable insight into post-
seismic stress relaxation (Brenguier, Campillo, et al., 2008) and crustal rheology (Tang et al., 2019).

5. Conclusions
We apply the ambient noise single-station cross-component technique to analyze continuous seismic data 
in 1998–2019. The results reveal coseismic drops as well as strong seasonal variations in seismic velocity 
changes (dv/v) in Taiwan. By systematically comparing the annual variations of dv/v, rainfall, air pressure, 
temperature, wind speed, and groundwater, in both time and frequency domains, we discuss possible physi-
cal mechanisms for the observed seasonality in dv/v. Our results suggest that annual rainfall and its induced 
pore pressure change is the principal driver for seasonal dv/v variations in Taiwan. Using a 1-D hydrological 
diffusion equation and a linear relationship between the pore pressure changes and dv/v, we find good 
agreement between the observed and predicted dv/v variations with correlation coefficients of 0.6–0.9 at 
stations located in mountainous and foothill regions. While the groundwater modeling also shows a high 
correlation (CC > 0.9) between rainfall and groundwater level variations with a short time delay (<1 day), 
the examination of the coda lapse-time dependence suggest that the medium changes are not near the sur-
face (e.g., groundwater variations). This corroborates that the dv/v seasonality is mainly caused by the pore 
pressure changes at depths as a hydrological diffusion model we proposed in Figure 10. Further frequen-
cy-dependent studies of dv/v may help resolve changes of hydrological parameters at depths in more details.

More importantly, evaluating (external) environmental influences on dv/v allows us to possibly isolate (in-
ternal) crustal damage related to earthquakes. By correcting the effect of rainfall-induced pore pressure 
changes, we demonstrate an improvement for detecting coseismic dv/v drops for regional moderate-to-large 
earthquakes. This study paves the way for monitoring and investigating the crustal tectonic processes of 
Taiwan, such as fault zone damage and healing, with more accuracy in the future.

Data Availability Statement
All processed cross-correlation functions are made to open access in a Harvard Dataverse reciprocity 
(https://doi.org/10.7910/DVN/GU2OTC).
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