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Onsite earthquake early warning (EEW) systems determine possible destructive S
waves solely from initial P waves and issue alarms before heavy shaking begins.
Onsite EEW plays a crucial role in filling in the blank of the blind zone near the epicenter,
which often suffers the most from disastrous ground shaking. Previous studies suggest
that the peak P-wave displacement amplitude (Pd ) may serve as a possible indicator of
destructive earthquakes. However, the attempt to use a single indicator with fixed
thresholds suffers from inevitable errors because the diversity in travel paths and site
effects for different stations introduces complex nonlinearities. In addition, the short
warning time poses a threat to the validity of EEW. To conquer the aforementioned
problems, this study presents a deep learning approach employing long short-term
memory (LSTM) neural networks, which can produce a highly nonlinear neural network
and derive an alert probability at every time step. The proposed LSTM neural network is
then tested with two major earthquake events and one moderate earthquake event
that occurred recently in Taiwan, yielding the results of a missed alarm rate of 0%
and a false alarm rate of 2.01%. This study demonstrates promising outcomes in both
missed alarms and false alarms reduction. Moreover, the proposed model provides an
adequate warning time for emergency response.

Introduction
Destructive earthquake events have continuously caused severe
loss of human lives and property. With studies showing the
probable inherent unpredictability of earthquakes (Geller,
1997), reliable short-term earthquake prediction remains
impractical (Kanamori et al., 1997). The urgent need for seis-
mic hazard mitigation thus demands an alternative approach.
These circumstances encourage the development of earthquake
early warning (EEW) systems.

An EEW system delivers ground-shaking alerts after an
earthquake has nucleated. These alerts may provide crucial
warning time for hazard mitigation procedures to be carried
out, making it possible to avert human casualties and economic
losses. In this section, the history of the development of EEW
systems are reviewed. Next, we provide a detailed examination
of the conceptual difference between regional EEW and onsite
EEW.

In Taiwan, the idea for EEW system implementation came
after an Mw � 7:4 (from the U.S. Geological Survey database)
earthquake in 1986. Although the epicenter was located off-
shore of Hualien, the most severe damage occurred in Taipei,
approximately 120 km away (Wu et al., 1999). In 1994, the
Central Weather Bureau (CWB) of Taiwan started the opera-
tion of a prototype EEW system around Hualien. The station
signals were processed in real time, and the results were

transmitted back to the CWB data center in Taipei. The idea
was to utilize the velocity difference between the destructive S
wave and transmission speed to provide a warning in the
urbanized Taipei area. However, due to the station density
and distribution, early warnings had an average error of
22 km in epicenter location and 0.7 units in magnitude
(Wu et al., 1999). Starting in 2001, a new system using a virtual
subnetwork approach (Wu and Teng, 2002) became functional
with the implementation of a new real-time strong-motion
network operated by the CWB, resulting in a more accurate
estimation of the source parameters and providing faster warn-
ings. In the past decade, efforts to develop EEW systems have
increased worldwide. Currently, several EEW systems are
operational around the world. The present state of these sys-
tems can be divided into three categories. Public alerts distrib-
uted through broadcasts or cellphones have been achieved in
Japan, Taiwan, South Korea, and Mexico. Limited alerts dis-
tributed to select users, such as schools, gas companies, and
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railway systems, function in India, Romania, Turkey, and the
United States. Finally, EEW systems in Italy, Switzerland,
Chile, and several other regions are in testing and development
stages (Allen and Melgar, 2019).

The peak P-wave displacement amplitude (Pd) was pro-
posed by Wu and Kanamori (2005) to serve as a possible indi-
cator for onsite EEW. Pd is obtained by double integration of
the strong-motion acceleration signals, followed by application
of a 0.075 Hz Butterworth high-pass filter to avoid the low fre-
quency drifts caused by numerical integration. A specific time
window of 3 s from the initial P waves was suggested by pre-
vious studies for a compromise between reliable ground-
motion estimation and early warning time (Wu and Kanamori,
2005; Wu et al., 2007).

The permitted time window (PTW) and the threshold value
are two important parameters in the Pd approach. The PTW
determines the length of the initial P wave used for estimating
the final peak ground shaking. The choice of the PTW is often
a compromise between warning lead time and alert accuracy. If
a longer PTW is chosen, Pd will have access to more ground-
motion information during the rupture, resulting in a more
accurate estimation. However, the trade-off of a longer
PTW is that the warning time will decrease. On the other hand,
a shorter PTWwill provide a longer warning time at the cost of
estimation accuracy.

The threshold value, which is the other important param-
eter in the Pd method, controls the size of the type one and type
two errors. In other words, the threshold value determines the
possibility of false alarms and missed alarms. A high threshold
will cause fewer false alarms, but it will also lead to more
missed alarms, whereas a low threshold will behave oppositely.

Hsieh et al. (2015) examined the effect of the two param-
eters in the Pd method using 1186 strong-motion records from
four earthquake events. The PTW is tested over a range of
1–10 s, and the threshold is tested over a range of 0.1–0.6 cm
with a 0.05 cm interval. The study suggested choosing a 3 s
PTW and 0.35 cm threshold value to optimize the Pd perfor-
mance in Taiwan, resulting in an average lead time of 2.92 s
and a successful detection rate of 90.91%.

In recent years, the rapid development of machine learning
has opened up many opportunities to innovate solutions for
existing problems. In the EEW, there are many machine learning
applications. For example, Li et al. (2018) used a combination of
generative adversarial networks and random forest to distinguish
P waves from local impulsive noise, Mousavi and Beroza (2019)
used both convolutional and recurrent networks to estimate
magnitude, and Saad et al. (2021) used a deep convolutional neu-
ral network (CNN) to estimate earthquake parameters, including
magnitude, origin time, depth, and location.

In our in-progress exploration studies, we revisited the
onsite EEW problem with the technique of CNNs. We
reported a successful model with much improved false alarm
and missed alarm rates compared with the optimized Pd

method (Liu, 2019). However, one disadvantage of CNNs is
that the PTW must be fixed. Unfortunately, this high-success-
rate model can sometimes result in a reduction in the warning
lead time. To account for the lead time, we propose a new
framework to map earthquake ground motion into time series
using recurrent neural networks (RNNs). The RNN triggers an
alarm whenever it experiences enough cumulative shaking
from the past, meaning it no longer has to wait for a fixed
PTW to estimate. Freeing up the PTW increases the lead time
in many cases without compromising too much accuracy.

In this article, we employ the long short-term memory
(LSTM) method, a well-known branch of RNNs, to solve
the onsite early warning problem. The key points of this work
are as follows:

• We describe in detail the proposed LSTM model for the
EEW problem (see the Methodology section).

• We show the test results of the LSTM model against three
moderate-to-large independent events (see the Results section).

• We compare the effectiveness of the LSTMmethod with that
of the Pd method. (see the Comparison with the Pd Method
section).

Data
The training data used in this study were obtained from two
seismic networks. The first source is the Taiwan P-alert net-
work operated by National Taiwan University. The second
source is the Japan strong-motion seismograph network (K-
NET), which provides data to increase the training data size
and complement large-magnitude events that are not included
in the Taiwan P-alert network.

The P-alert seismic network consists of a large number of
low-cost microelectromechanical system accelerometers
(Wu et al., 2013), resulting in an ultrahigh density network
in Taiwan. As of 2021, there are more than 700 operational
stations running in the P-alert network.

K-NET is a nationwide network spread across Japan that has
been operational since 1996. More than 1000 stations are
uniformly distributed, with an average distance of 20 km. The
strong-motion signals are transmitted to the National Research
Institute for Earth Science and Disaster Resilience (NIED) data
center in real time and are made available for the general public.

The events are selected for analysis based on their potential
damaging power and their need for onsite warning. All of the
events occurred between 2011 and 2019. For the P-alert net-
work, events with local magnitudes greater than five located
within latitude 21° N ∼ 27° N and longitude 118° E ∼
123° E are selected. A total of 167 P-alert events with
10,202 records are included in the dataset. Figure 1a,b shows
the P-alert events used in this project. For K-NET, events with
local magnitudes greater than five located within latitude 25° N
∼ 50° N and longitude 125° E ∼ 150° E are selected. An
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additional recorded station
number criterion is set to
exclude some small offshore
events that were unlikely to
impact inland Japan. A total
of 369 K-NET events with
38,113 records are included in
the dataset. Figure 1c,d shows
the K-NET events used in this
project. Figure 1e shows the
statistical distribution of the
total records against epicentral
distance. Figure 1f shows the
statistical distribution of the
total records against the peak
ground acceleration (PGA).

Methodology
LSTM network
The LSTM network (Hochreiter
and Schmidhuber, 1997; Gers
et al., 2000, 2005) is a distinct
kind of RNN (Williams and
Zipser, 1989; Werbos, 1990)
that is capable of forecasting
anomalies based on long-term
and short-term trends. LSTM
achieves this by employing both
the cell state to represent the
current state and multiple gates
to screen the information flow
with time. LSTM updates the
warning state when acquiring
new information each time step
(0.01 s in our EEW problem).
Inspired by the use of the
short-term average/long-term
average (STA/LTA) method
for seismic detection, we con-
sider that the LSTM, which also
learns from long-term and
short-term trends, can be used
with the time series of seismic
waveforms to identify damaging
earthquakes.

Data preprocessing:
feature extraction
Figure 2 summarizes the pre-
processing procedures. The fea-
ture generation process starts
with raw records from the
P-alert and K-NET stations,

Figure 1. Illustration of the data used in this project. (a) Training events from the P-alert network.
(b) Validation events from the P-alert network. (c) Training events from K-NET. (d) Validation events
from K-NET. (e) Distribution of records with respect to epicentral distance. (f) Distribution of records
with respect to peak ground acceleration. The color version of this figure is available only in the
electronic edition.
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both with a 100 Hz sampling rate. The raw records are
demeaned before determining P arrivals with an STA/LTA
picker. The results of the P-arrival determination are checked
with the 1D velocity model (Preliminary Reference Earth
Model [PREM]) and another automatic picker (Huang and
Wu, 2019). These checks control the data quality and ensure
that the picks do not severely deviate. The records are discarded
if the picking time difference between the methods exceeds one
second. The feature data consist of 10 s time windows starting
1 s before the pick and continuing to 9 s after the pick. There are
a total of six channels included in the input features, including
three components of accelerations and three velocity compo-
nents processed with a 0.075 Hz Butterworth high-pass filter.
Although the feature consists of 10 s time windows, the machine
learning platform, Keras in our case, does not employ it all at
once. Instead, it reads from our code to know that it is meant for
the RNN architecture. Then it treats the feature data as time

series and uses the feature
incrementally for training, vali-
dation, and testing.

The upper panel of Figure 3
demonstrates the operation of
the STA/LTA picker on one
P-alert trace. The red line
denotes the time when the
STA/LTA exceeds the thresh-
old. The lower panel of Figure 3
demonstrates a magnified wave-
form from the same trace on
three channels. The red line
denotes the pick time, and the
shaded area shows the range
of the 10 s time window used
as a feature input.

Data preprocessing:
label determination
The label criterion is based on
the Gal, which follows a pre-
vious study (Hsieh et al.,
2015). The label criterion is in
accordance with the definition
of the CWB intensity scale and
its definition of serious shaking.
Records with PGA of the whole
event greater than 80 Gal are
labeled as 1 (alert), and records
with PGA of the whole event less
than 80 Gal are labeled as 0 (no
alert). Figure 4 shows both labels
in the time series format used in
the LSTM machine learning.
The time series of label 1 con-

sists of a step function that rises from zero to one at the P arrival
time. The time series of label 0 remains zero in probability over
the whole range of the feature time window.

Training and validating
Throughout the training process in machine learning, model
overfitting is always a daunting issue to conquer. Overfitting
denotes the phenomenon that a trained model fits nicely
with the training data but fails to generalize to the new data.
In other words, overfitting occurs when the performance of the
training data is much higher than the performance of the
test data.

Overall, we do not observe severe overfitting in this work, just
some minor rebound overfitting cases, which coresponds to
overfitting after model convergence is achieved. It usually hap-
pens after many epochs of training. We adopt some common
practices of machine learning to monitor and prevent

Figure 2. Flowchart of the training data preprocessing. The right side of the flowchart illustrates
how the features are generated. The left side of the flowchart illustrates how the label is
determined. The color version of this figure is available only in the electronic edition.
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overfitting. First, we use the
validation data to monitor the
learning process. The validation
dataset comes from the training
dataset, but it is independent of
the learning process. In prac-
tice, the whole training dataset
with 536 events is divided into
479 events (43,969 records) for
training and 57 events (5346
records) for validation. Table 1
shows the details of the training
data and validation data. By
grouping events into these two
bins, we are able to avoid pos-
sible data leakage between the
training and validation datasets.
Second, an early training stop is
used to prevent rebound over-
fitting. The early training stop
uses minimal validation loss as
an indicator to determine the
best epoch (iteration of training
process) at which to stop. In
practice, we consider using the
early stop if rebound overfitting
happens after 70–80 epochs.

Results
Optimized hyperparameter search
The deep learning model architecture can be determined
through various hyperparameters. We perform a grid search
of these hyperparameters to derive the optimal model for
the onsite EEW problem. There are four types of hyperpara-
meters in our LSTM models.

The first two hyperparameters are the number of hidden
LSTM layers (depth) and the number of units in one layer
(width). Although the universal approximation theorem
(Cybenko, 1989; Leshno et al., 1993) states that neural net-
works with a single hidden layer can approximate any continu-
ous function, the width of such a shallow network would need
to grow exponentially according to the input dimension, which

Figure 3. Demonstration of the short-term average/long-term average (STA/LTA) picker and the 10 s
window feature. The red line denotes the STA/LTA pick. The shaded area denotes the 10 s window
as the input feature. The color version of this figure is available only in the electronic edition.

Figure 4. Ground-truth time series labeling for long short-term
memory (LSTM) machine learning. Label 0 is a constant function
with a value of 0. Label 1 is a Heaviside step function with a jump
at the P arrival. The color version of this figure is available only in
the electronic edition.

TABLE 1
Training and Validation Dataset

P-Alert K-NET Total

Training events 151 328 479

Training records 10,157 33,812 43,969

Validation events 16 41 57

Validation records 1,045 4,301 5,346
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makes it computationally impractical. A study has shown that
adding layers to extend the depth of neural networks is often
computationally effective and has more expressive power (Lu
et al., 2017) . Inspired by their analysis on the different neurons
at different layers, we tested models with one to six layers with
different numbers of units. We set the number of units at each
layer as [Un�2], in which U is the base units, and n is the nth
LSTM layer starting from the output layer. There are three base
units tested in this study: 1.5, 1.7, and 2.0. In the unit setting
expression, the floor function guarantees the setting numbers
of units are all positive integers.

Batch size is a hyperparameter that controls the number of
training samples propagated through the network during a single
iteration. During the training process, the gradient of the loss
function is calculated on every feedforward pass and determines
how the weights and biases in the network are to be adjusted.
Using a subset (batch) of the whole training dataset, the loss gra-
dient of the batch can be efficiently calculated, which represents

an estimation of the loss gra-
dient of the whole dataset. Large
batch sizes containmore entries,
and the batch loss gradients are
closer to the overall loss gra-
dient. In addition, this approach
has the advantage of better par-
allelizing the computing process
with GPUs. Small batch sizes
often lead to a less accurate esti-
mation of the overall loss gra-
dient. However, the small-
batch loss gradient can result
in a more robust model because
the large deviation escapes local
minima or saddle points more
easily. In this work, batch sizes
of 256 and 512 are tested.

The final hyperparameter
tested in this study is the opti-
mization method. The most
common optimization method
is stochastic gradient descent
(SGD), a stochastic approxima-
tion of the gradient descent
method. Variousmethods based
on SGD have been developed
over the years. In this study, we
tested two of them, RMSprop
and Nadam. RMSprop controls
the learning rate by an exponen-
tial decay average of all past
squared gradients. Nadam com-
bines RMSprop with a Nesterov
accelerated gradient to provide

faster convergence to the loss minimum.
The grid-search model performance is evaluated using the

validation dataset and is compared on twometrics. The F1 score,

EQ-TARGET;temp:intralink-;df1;308;249F1 � 2 × precision × recall
precision� recall

; �1�

which is the harmonic mean of precision and recall, provides a
comprehensive indicator of how well the model performs as a
classifier. The other metric is the average warning lead time:

EQ-TARGET;temp:intralink-;df2;308;171tlead � tPTA>80 − talert: �2�

It denotes a measure of how much early warning time the
model provides. The two metrics are normalized to one and
combined as the final score:

EQ-TARGET;temp:intralink-;df3;308;106score � 50 × F1� 50 × tlead; �3�
in which the overline denotes the normalized quantities. In this
study, we assign equal weight to both the alert accuracy and

Figure 5. Hyperparameter grid search. The color indicates the number of LSTM layers. The shape
indicates different base units of the layer. The best model is number 59 near the upper-right corner.
The color version of this figure is available only in the electronic edition.
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warning time in the final score, meaning that the importance of
both metrics is treated as equal.

Figure 5 shows the F1 score, lead time, and final score based
on the validation dataset. There are 72 models shown in the
grid search. The name of the model denotes the specific hyper-
parameters used, including layers (L), units (U), batch size (B),
and optimization method (O). The final optimized model is
L5U2B512Onadam, with the highest model score of 87.24.
Figure 6 shows the architecture of the final optimized model.
Figure 7 shows the training and validating curves of the train-
ing process of the final opitmized model. Although there is no
sign of overfitting in this specific architecture, there are a frac-
tion of models that shows a sign of rebound overfitting after
many epochs. For those models, we follow the common prac-
tice of early stopping to avoid overtraining.

LSTM model performance on the test data
Because of the selection bias from using the validation dataset
as an index to choose the best performing model, a stand-alone
test dataset is needed in addition to the training data and

validation data to derive the
truly unbiased performance of
the model.

The unbiased test dataset
for this study consists of three
seismic events, two of which
caused casualties and eco-
nomic loss in Taiwan. The first
event was the 2016 Meinong
earthquake (Mw � 6:4), with
a total of 328 records available
for testing. The second event
was the 2018 Haulien earth-
quake (Mw � 6:4), with 512
records available. The third
event was a recent moderate
earthquake in eastern Taiwan
in May 2021 (Mw � 4:9), with
164 records available. We
include this event to demon-
strate that our model can also
operate on smaller earth-
quakes. The total count of
available records is 1004, in
which 112 records are label 1
(PGA > 80 Gal) and 892 are
label 0 (PGA < 80 Gal).

Strong-motion records of
the three test events are prepro-
cessed similarly to the training
data, as depicted in Figure 2,
but with a 20 s time window
starting 1 s before the STA/

LTA picker and continuing for 19 s after. A longer time window
is chosen to accommodate the real scenario of the ground
motion of the event. In practical use cases, even if the first
few seconds of the P waves fail to trigger the LSTM model, the
following Swaves still ensures that an alert is issued at the cost of
warning time. This is made possible by the cumulative time
series property of the LSTM neural networks.

This study interprets the EEW problem as a sequential
binary classification problem. The classification results can
thus be divided into four possible outcomes: true positives, true
negatives, false positives, and false negatives. True positives
denote the records that should be alerted and are successfully
predicted by the LSTM model. True negatives are records that
should not be alerted and the model also classifies as no alerts.
False positives are records that should not be alerted but are
misclassified by the model and issued as alert, also called false
alarms. False negatives are records that should alerts but were
not alerted by the model, also called missed alarms. To mea-
sure the rate of the two types of error, two measures are intro-
duced. The precision is the fraction of true positives among all

Figure 6. Model architecture of the best model.
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positive predictions made by the classifier, and the recall is the
fraction of true positives among the actual positives.

The classification performance of the LSTM model gives a
result of 18 false alarms and 0 missed alarms out of the 1004

total records, providing a preci-
sion rate of 86.15% and a recall
rate of 100%.Within the 18 false
positives, 10 falsely alarmed
records had a PGA in the range
of 60–80 Gal. Such close
differences in PGA are difficult
for the LSTM model to classify
and are reasonably misinter-
preted.

In addition to the classifica-
tion performance, another
important aspect of EEW sys-
tems is the early warning time
provided. The earlier the warn-
ing arrives, the more opportu-
nities there are for hazard
mitigation procedures to be car-
ried out. In this study, the warn-
ing lead time is defined as the
time difference between the
time at exceedance of 80 Gal
for PGA and the model-pro-
vided alert time. The LSTM
model lead time has an average
of 2.64 s with a standard
deviation of 2.79 s. The lead
times of individual stations
are shown in Figure 8, in which
the stations within an epicentral
distance of 50 km (regional
warning blind zone) show good
results in warning lead times,
ranging from 2 to 5 s for most
of them. For stations farther
from the epicenter, several sites
outside the range of 50 km fail
to provide warnings within the
duration of the initial P waves.
This may be due to either the
window length (10 s) used for
training (not enough represen-
tative data for longer time win-
dows) or simply the features’
(three-component acceleration
and velocity) attenuation over
the longer travel path.

A true positive LSTM
model output is presented in

Figure 9a. The upper panel shows the recorded three-compo-
nent acceleration signals, and the lower panel shows the prob-
ability output produced by the LSTM neural network at the
corresponding time steps. The black-dashed line shows when

Figure 7. Illustration of training process of the final optimized model. (a) Training and validating loss
curve. (b) Training and validating accuracy curve. The color version of this figure is available only in
the electronic edition.

Figure 8. Lead time of the 100 true positive records. The time starts at the P arrival time on each
record. The color version of this figure is available only in the electronic edition.

Volume 93 • Number 2A • March 2022 • www.srl-online.org Seismological Research Letters 821

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/93/2A/814/5552879/srl-2021197.1.pdf
by National Taiwan Univ - Lib Serials Dept user
on 22 June 2022



the output probability exceeds
the 0.5 threshold and triggers a
warning. EEW in the displayed
station successfully alerted at
the 1.33 s time mark, giving a
lead time of up to 3.87 s.

Figure 9b shows an example
of a true negative record.
During the 20 s time span,
the model output probability
of severe ground shaking
(PGA > 80 Gal) remains low
and fails to exceed the proba-
bility threshold of 0.5.

A false positive record is
displayed in Figure 9c, in
which the model output prob-
ability exceeds 0.5 at the 3.11 s
mark. However, the absolute
ground acceleration did not
surpass 80 Gal. This alert is
thus considered a false alarm.

Discussion
Comparison with the Pd

method
A brief introduction of the two
trigger settings on the P-alert
device is provided before com-
paring the EEW performance of
the LSTM approach with that of
the Pd approach. The P-alert
device has two triggers for set-
ting off an EEW. The first trig-
ger is the vertical component Pd

set at a threshold of 0.35 cm
within the PTW of 3 s. These
parameter settings were selected
according to a previous study
(Hsieh et al., 2015). The second
trigger is the exceedance level of
80 Gal from the recorded accel-
eration signal (Wu et al., 2016).
In the following comparisons,
the Pd approach issues alerts by
considering only the Pd trigger.

For the 2016Meinong earth-
quake, the LSTM approach
shown in Figure 10a success-
fully alerted sites within the
blind zone and covered a large
area of stations the entire way
up to Taichung, 150 km from

Figure 9. Model classification demonstration. (a) True positive record. (b) True negative record.
(c) False positive record. The color version of this figure is available only in the electronic edition.
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the epicenter. Despite several false alerts, the LSTM model
shows great performance in this case. The Pd approach shown
in Figure 10b successfully covers 11 stations within the 50 km
blind zone but misses alerting a dozen stations distributed to the
southwest, southeast, and northeast of the epicenter. This result
may be caused by the rupture directivity of the 2016 Meinong
earthquake, in which the event ruptured toward the northwest.

For the 2018 Hualien earthquake, as shown in Figure 11,
both the LSTM and Pd methods successfully issued warnings
in the blind zone area; although the LSTM once again provided
EEWs to farther stations than Pd , these areas could be covered
by regional EEWs.

For the 2021 eastern Taiwan earthquake, as shown in
Figure 12, the Pd method did not issue any warning in the blind
zone. On the other hand, the LSTMmethod successfully issued
warnings. There are still several false-positive warnings
because the eventual PGAs did not exceed 80 Gal, but came
close to it (many of them 60 to 78 Gal).

The warning lead time differences between the two methods
are displayed in Figure 13. For the 2016 Meinong event, the Pd

method provided longer lead times for most of the stations,
whereas the LSTM approach had a longer lead time at most
of the stations for the 2018 Hualien event. For the 2021 events,
only LSTM method provides lead time. Although the Pd

method may achieve a faster alert for some of the stations,
the LSTM model is capable of providing many more correct
alerts both within and outside the 50 km blind zone. From
these results, it may be natural to consider using the LSTM
model as an additional trigger on P-alert devices, along with
the Pd trigger and PGA trigger (negative lead times can be
eliminated to zero). Through these multiple triggers, the pos-
sibility of providing longer lead times can be maximized, with
the different methods complementing each other. Figure 14
displays the lead time distributions for both the LSTM and
Pd approaches, showing a much larger number of alerts pro-
vided by the LSTM model.

Design choices and technicalities
Throughout the implementation of LSTM for onsite EEWs, we
made some design choices. The following choices may be use-
ful for future machine learning projects.

We use filtered velocities as input. In our LSTM model,
there are six channels of inputs. Three raw acceleration records
and three filtered velocity records. These filtered velocities are
derived from the accelerations. However, we found that the
filtered velocities are quite useful and serve as stabilizers that
effectively reduce false alarms in LSTM caused by reinforce-
ment of previous fluctuations.

We use Japanese data to conquer unbalanced data issues. To
train a model to classify binary outcomes, the true and false
cases in the training sample should be equal or at least com-
patible. Otherwise, the machine learning algorithm will be
heavily inclined to predict the outcome of the majority case

Figure 10. Earthquake early warning (EEW) performance for the
2016 Meinong earthquake. The triangles represent the true
positive stations. The squares represent the true negative sta-
tions. The diamonds represent the false positive stations. The
pentagons represent the false negative stations. The two dashed
circles illustrate the 30 and 50 km radii around the epicenter.
(a) The results of the LSTM method. (b) The results of the Pd
method. The color version of this figure is available only in the
electronic edition.
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of the training data. This imbalance issue is especially difficult
for EEW because the Gutenberg–Richter law states that there
should be fewer large earthquakes. In practice, we decided to
add more true cases into the training set using the Japanese
seismic data. The final model works well with this setup
and does not suffer from the inclination problem.

Computational specification
The training part of the project is done on a desktop PC with
Nvidia GeForce GTX-1060 GPU with 1280 CUDA cores and

Figure 12. EEW performance for 2021 eastern Taiwan earth-
quake. The triangles represent the true positive stations. The
squares represent the true negative stations. The diamonds
represent the false positive stations. The pentagons represent the
false negative stations. The two dashed circles illustrate the 30
and 50 km radii around the epicenter. (a) The results of the LSTM
method. (b) The results of the Pd method. The color version of
this figure is available only in the electronic edition.

Figure 11. EEW performance for the 2018 Hualien earthquake.
The triangles represent the true positive stations. The squares
represent the true negative stations. The diamonds represent the
false positive stations. The pentagons represent the false neg-
ative stations. The two dashed circles illustrate the 30 and 50 km
radii around the epicenter. (a) The results of the LSTM method.
(b) The results of the Pd method. The color version of this figure is
available only in the electronic edition.
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6 GB RAM. The training time for a typical five-layer LSTM
model is about one hour, 25–30 s per epoch.

Conclusions
In this project, we put the theoretical architecture of RNN deep
learning into the context of a real-world onsite EEW problem.
The LSTM model of RNN for onsite EEW demonstrates the

ability to deliver fast and robust alerts to areas near the epi-
center, which effectively mitigates human casualties and prop-
erty losses. The positive results in terms of both accuracy and
warning time using three out-of-training moderate-to-large
earthquakes demonstrate the power of RNN-type deep learn-
ing. Currently, RNNs are the subject of intensive research, and
many interesting variations have emerged over the years. We
believe that employing state-of-art RNN techniques can fur-
ther improve the performance of EEW in the future.

Data and Resources
The strong-motion waveform records from the P-alert and K-NET net-
works can be downloaded at http://palert.earth.sinica.edu.tw/db/ and
http://www.kyoshin.bosai.go.jp/, respectively (last accessed June 2021).
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Figure 13. Lead time difference between the LSTM and Pd
methods. The two dashed circles illustrate the 30 and 50 km radii
around the epicenter. (a) 2016 Meinong earthquake. (b) 2018
Hualien earthquake. The color version of this figure is available
only in the electronic edition.

Figure 14. Lead time histogram of the LSTM and Pd methods. The
upper part shows the lead time distribution of the LSTMmethod.
The lower part shows the lead time distribution of the Pd
method. The color version of this figure is available only in the
electronic edition.
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