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RED-PAN: Real-Time Earthquake Detection and
Phase-Picking With Multitask Attention Network
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Abstract— In this article, we show that the real-time1

earthquake detection and phase picking with multitask attention2

network (RED-PAN) can carry out earthquake detection3

and seismic phase picking on real-time and continuous data4

with appropriate data augmentation. Goal-oriented data5

augmentations materialize the capability of RED-PAN. Mosaic6

waveform augmentation (MWA) synthesizes data conditioned by7

superimposed earthquake waveforms, marching MWA (MMWA)8

extends MWA to allow the dynamic input of seismograms, and9

earthquake early warning augmentation (EEWA) enables to10

identify P arrivals using the early part of P-wave waveforms. For11

stable P and S arrival probability distribution functions (pdfs) of12

continuous recordings, we use the median values of phase predic-13

tions at each time point until the model scans through, which we14

term the seismogram-tracking median filter (STMF). For real-15

time P arrival detection, we use a threshold (0.3) on the real-time16

P arrival pdf as the trigger criterion. We examined our proposed17

strategy in different application scenarios. For the dataset of18

the fixed-length samples, our RED-PAN(60 s) model performs19

similar to EQTransformer (EqT) on the STanford EArthquake20

Dataset (STEAD) and outperforms the Taiwan dataset. For21

continuous data examination of the 2019 Ridgecrest earthquake22

sequence, the number of earthquake waveforms detected by our23

RED-PAN(60 s) model is 2.7 times the number of EqT under the24

same receptive field (60-s-long seismogram). In the application25

of earthquake early warning (EEW), our RED-PAN(60 s) model26

only requires the P-wave waveform about 0.13 s long from27

the P-alert and 0.09 s long from the Taiwan Strong Motion28

Instrumentation Program (TSMIP) network. The source code is29

available at https://github.com/tso1257771/RED-PAN.30

Index Terms— Data augmentation, multitask learning (MTL),31

real-time earthquake monitoring.32
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I. INTRODUCTION 33

EARTHQUAKE monitoring is the foundation of obser- 34

vational seismology, which is data-driven and aims to 35

explore the dynamics and mechanisms of earthquakes. For 36

short-term earthquake monitoring, earthquake early warning 37

(EEW) systems can warn of impending ground shaking as 38

an earthquake strikes [1], [2], [3]. The principle of EEW is 39

to forecast seismic ground motions and disseminate alerts to 40

different end users to take precautionary actions. According to 41

the range of early warning areas, EEWs can be categorized as 42

onsite warnings that issue alerts locally and regional warnings 43

that issue alerts across a broader range of areas away from 44

the hypocenter. Both the warning categories are based on 45

observations of earthquake ground motions. 46

For regional warning, the source-based algorithms are one 47

of the most popular choices. It relies on the observations of 48

earthquake waveforms and the corresponding seismic phases 49

recorded at stations over the seismic network [4], [5], [6], [7], 50

[8]. For instance, ElarmS [4] aggregates P arrival information 51

from several stations to determine source parameters, such 52

as earthquake location, origin time, and magnitude. Then the 53

spatial distributions of peak ground motions could be fore- 54

cast using attenuation functions or ground motion prediction 55

equations (GMPEs). The earthquake location and origin time 56

are estimated using the seismic velocity models and seismic 57

phase arrivals. Determination of magnitude using only a few 58

seconds of P-wave data could be estimations of P-wave 59

predominant frequency contents [1], [4] or predetermined 60

logistic regressions [9]. 61

Similarly, onsite warning depends on early detection of 62

P-waves and forecasting impending peak ground motions 63

in situ using single-station methods [10], [11], [12]. Hence, the 64

earlier the P arrivals are detected, the faster the P-wave-based 65

EEW algorithm kicks off. The quality of the P arrival picking 66

determines whether the algorithms work as anticipated. 67

Due to the computational efficiency of the short-term aver- 68

age (STA)/long-term average (LTA) methods [13], they usually 69

serve as defaulting real-time P arrival pickers. However, sim- 70

ilar to other statistical algorithms that capture abrupt temporal 71

variations in amplitude or pattern (e.g., earthquake envelope 72

functions [14], autoregressive Akaike information criterion 73

(AR-AIC) [15], kurtosis function [16], skewness function [17], 74

[18], filtering [19], and particle motion polarization [20], [21], 75

[22]), these traditional pickers rely on heavy parameter tuning 76

and are error-prone under complex conditions, such as intense 77

1558-0644 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 05,2022 at 02:52:04 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1545-1640


2900111 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

aftershocks [23], [24], [25] and P-waves with very small78

amplitudes [23].79

The deep-learning-based methods have recently signifi-80

cantly improved P-wave detection in quality and quantity81

using only a few seconds of P-wave data [26], [27]. More82

advanced deep-learning-based methods use full waveforms to83

detect earthquakes and/or pick both seismic P and S arrivals84

at the same time [28], [29], [30], [31], [32], [33], [34], which85

has the potential to provide more information for both the86

purposes of long-term earthquake monitoring and cataloging87

earthquakes for near-real-time applications [35], [36], [37].88

The robustness and effectiveness of the deep-learning-89

based methods [29], [30], [31], [32], [33], [34] have made90

them emerging as baseline methods for processing the grow-91

ing volume of continuous and real-time data. However,92

we have seldom found recent deep-learning-based models93

trained on datasets specific to real-time and continuous data,94

in which earthquake waveforms might lack complete repre-95

sentations of seismic sources. Here, we term such an incom-96

plete earthquake waveform as a “time-clipped” earthquake97

waveform. The model with fixed-length input deals with98

time-clipped earthquake waveforms frequently when applied99

to real-time/continuous data. A common strategy to determine100

the model output values on continuous data is to track the101

results of repeatedly predicted samples for only a few seconds.102

We must note that the deep learning algorithms introduce a103

considerable amount of nonlinearity such that models could104

have different interpretations according to input data com-105

pleteness. Our perspective is to track the model output until106

the model scans through all the data to achieve stable and107

objective output.108

In this study, we propose a recurrent residual U-Net-based109

multitask attention network for earthquake waveform detection110

and seismic P/S arrival picking, in which a recurrent residual111

U-Net serves as a feature-sharing backbone network, and112

two attention networks tailored with different task learning.113

In addition, we present goal-oriented data augmentation tech-114

niques to detect P arrivals in real-time and stably process con-115

tinuous data with conditions: successive events, time-clipped116

earthquake waveforms, and others. Our findings point out117

common problems overlooked by many studies: the training118

data are not specific to their usages, and their applications119

to continuous data were not model-objective. We promote120

model robustness on continuous and real-time data processing121

by adopting appropriate data augmentation techniques, which122

contribute a notable point of view to deep learning applications123

in observational seismology.124

II. METHODS125

Unlike the single-task seismic phase picking model of [34],126

in this study, we extend it to the multitask model, in which the127

attention gates construct the task-specific attention networks.128

In addition, we also use different data augmentation tech-129

niques on the training datasets and demonstrate performance130

improvements on continuous data and real-time detection. This131

section introduces the model architecture, the dataset in use,132

the goal-oriented data augmentation method, and how we 133

process continuous data. The goal-oriented data augmentation 134

strategies materialize the capabilities of real-time earthquake 135

detection and phase picking with multitask attention net- 136

work (RED-PAN): 1) mosaic waveform augmentation (MWA); 137

2) marching MWA (MMWA); and 3) EEW augmentation 138

(EEWA). MWA aims to pick and associate seismic P and S 139

phases of independent earthquake waveforms on seismograms 140

with multiple earthquake waveforms existing under the predic- 141

tion window. MMWA is an extension of MWA that shifts the 142

data backwardly and forwardly, helping to stabilize the model 143

output value when making sliding predictions. EEWA allows 144

early detection of seismic P arrivals for EEW. Considering the 145

fixed length of the RED-PAN input and output, we adopt the 146

seismogram-tracking median filter (STMF) strategy that tracks 147

the prediction results and takes the corresponding median 148

values of each sample when making sliding predictions on 149

dynamic input continuous data. 150

A. Recurrent Residual U-Net-Based Multitask Attention 151

Network 152

Multitask Learning (MTL) refers to the model learning 153

fashion that enables the execution of multiple tasks in a single 154

network by sharing global representations between different 155

tasks [38], [39]. Generally, MTL has multiple loss functions 156

to optimize and is widely used in the field of computer 157

vision [40], [41] and natural language processing [42]. The 158

MTL fashion is usually more desirable and efficient in prac- 159

tical usage in terms of memory, inference speed, and model 160

setup. MTL poses two critical challenges to sharing informa- 161

tive features among different tasks: 1) how to share, namely, 162

model architecture design; and 2) how to balance loss from 163

different tasks. Under the framework of a multitask attention 164

network [43], our adaptive proposal RED-PAN is composed 165

of a recurrent residual U-Net [34], [44] as the backbone 166

network for global feature-sharing, and two mounted attention 167

subnetworks for task-specific feature learning (Fig. 1). Each 168

attention network is computed upon several attention modules 169

in an encoder–decoder manner, which has the same depth as 170

the recurrent residual U-Net. The attention modules apply soft 171

attention gates [43] on the corresponding recurrent-residual 172

convolution (RRC) layers [45] of shared recurrent-residual 173

U-Net at all the levels [Fig. 1(a) and Appendix A], which 174

serve as feature selectors tailored with each task. The model 175

outputs phase time functions for picking seismic phases and 176

earthquake waveform detection functions from the last layer 177

of the two attention subnetworks separately. Both the attention 178

subnetworks correlate with the backbone network, and the 179

total loss from the weighted loss of attention subnetworks 180

would be minimized after training. Thus, the shared recurrent 181

residual U-Net could learn generalized representations across 182

all the tasks, and each attention network could jointly learn 183

task-specific features in a self-supervised manner. 184

The input of RED-PAN(60 s) is the Z score standardized 185

raw three-component seismograms with a length of 6000 sam- 186

ples, which corresponds to 60-s-long seismograms with a 187
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Fig. 1. Multitask model architecture and goal-oriented data augmentation templates for seismic phase picking and earthquake event detection. (a) Model
consists of a recurrent-residual U-Net as the backbone and two mounted task-specific attention networks that share information in-between the backbone.
The model inputs are the three-component seismograms, and the attention networks of the model output seismic phase picking functions (attention sub-net I)
and earthquake waveform detection functions that wrap every P–S pair (attention sub-net II). Here, RRC operation refers to RRC operations. Each attention
sub-net is composed of several gated attention layers â corresponding to the gating signal, or RRC outputs R of recurrent residual U-Net at all the depths.
Feature transduction between â and R relies on the attention gate mechanism. (b) Details of the RRC operation and gated attention layer computation for
constructing the attention network. (c.1) Triplet set of MMWA products that show the backwardly and forwardly shifting of the centered quasi-synthetic
waveform. (c.2) Templates of EEWA products with the black and red dashed lines denoting P and S phase arrivals, respectively. The first template shows the
waveform of the first few seconds of the P-wave recorded under background noise interference. The second and third quasi-synthetic templates, respectively,
show the waveform that the first few seconds of the P waves recorded under the interference of another/the other two earthquake waveforms.

100-Hz sample rate. The outputs are two sets of vectors for188

seismic phase picking and earthquake waveform detection189

(Figs. 1 and 7). The target functions for the seismic phase pick-190

ing module are composed of three phase time functions. The191

first two functions are P and S phase time functions, which are192

the truncated Gaussian functions with the standard deviation193

of 0.2 and 0.3 s centered at labeled P and S arrivals. Other194

samples are padded with 0 to fulfill the length of 6000 point-to-195

point samples. The last function of seismic phase picking mod-196

ule is “Others” that the probability distribution function (pdf)197

is calculated as: target(Others) = 1 − target(P)− target(S).198

For every time step, the summation of the three-channel199

target functions is 1, so we could apply softmax normalized200

exponential function to set probabilities in the output layer for201

the phase picking module. Note that the standard deviation202

for the labeled phase inherently represents the labeling misfits203

of the ground truth. For model calibration, we have conducted204

experiments to find the optimal standard deviation of the trun-205

cated Gaussian function of the P and S phases of the Taiwan206

dataset [34]. The target functions for the earthquake waveform207

detection module are composed of two pdfs: 1) the box-car-208

like function wrapping a P and S arrival pair [abbreviated209

as “EQ mask” in Figs. 1(a) and 7] and 2) “Others” computed210

as: target(Others) = 1 − target(EQmask). The data space211

of “EQ mask” between the ground truth P and S arrivals212

is filled with 1. The front is replaced by the P phase time 213

function (half truncated Gaussian function) before ground- 214

truth P arrival, and the same steps are used for the tail of 215

the box car using the S phase time function (Fig. 7). Also, 216

we apply the softmax normalized exponential function to set 217

probabilities in the output layer for the earthquake waveform 218

detection module. The loss function H for the two tasks is 219

defined in terms of cross-entropy between the softmax normal- 220

ized predicted functions q and the corresponding ground-truth 221

target functions p as follows: 222

Hpicking(p,q) = −
3�
c

�
x

pc(x) log qc(x) (1) 223

HEQmask(p,q) = −
2�
c

�
x

pc(x) log qc(x). (2) 224

In (1) and (2), x refers to the time step and c is the number 225

of output functions for each task. 226

B. Balancing Loss From Different Tasks 227

Generally, the loss function for k-task learning is defined 228

as the weighted sum of different task losses. Training MTL 229

models have difficulty striking a balance between different 230

tasks, which is particularly tedious for manual tuning. Grad- 231

Norm [46] learns to average task weighting over time by 232
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considering the rate of change in loss for different tasks, which233

requires access to the internal gradients of the model. Simi-234

larly, here we adopt a dynamic weight average (DWA) [43]235

strategy that considers only numerical task loss. Let Lk denote236

the loss function for task k. The task-specific weighting λk is237

defined as follows:238

λk(I ) := K × exp(wk(I −1)/H )�
i exp(wi (I −1)/H )

, wk(I − 1)= Lk(I −1)

Lk(I − 2)
.239

(3)240

Here, I represents training epoch iterations, and we set241

wk(I ) = 1 for I ≤ 2. wk(·) calculates the relative descending242

rate, which is then scaled by the temperature scaling factor243

H . A larger H results in more even distribution weightings244

among different tasks, and we set H = 2 in this study.245

Furthermore, (3) can be considered the multiplication of246

the softmax operator and constant K , which ensures that247 �
i λi (I ) = K . Therefore, in this study the total loss in the248

training epoch I could be calculated as follows:
�2

k λk(I )Hk,249

where k = 1, 2 represents the phase picking task and the250

earthquake waveform detection task.251

C. Dataset252

In this study, we collect seismograms sampled at 100 Hz253

from the Taiwan dataset and STanford EArthquake Dataset254

(STEAD) [47] for model training, validation, and testing.255

Seismograms of the Taiwan dataset are recorded by the256

Central Weather Bureau (CWB) network and Broadband Array257

in Taiwan for Seismology (BATS) [48], with data gathered258

from 2012 to 2018 used for model training and validation and259

those gathered from 2019 used for model testing. To ensure260

that the model can characterize earthquake waveforms at261

any possible location within the prediction window, we slice262

and randomly locate the earthquake waveform of the Taiwan263

dataset for each sample. Different from our Taiwan dataset,264

the earthquake waveform of STEAD is located at the forepart265

of the seismogram so that a complete earthquake waveform266

can be well-presented. On the other hand, to meet the needs267

of single-component seismic recorders and recording inter-268

ruptions, we randomly padded the waveform with zeros by269

fractions or dropped some channels. The STEAD dataset270

used for model training and testing in this study is the same271

as that of [33], which leaves 880 K earthquake waveforms272

and 200 K non-earthquake waveforms for model training273

and 103 K earthquake waveforms and 23.5 K non-earthquake274

waveforms for benchmarking. The Taiwan testing dataset275

is composed of 198 K earthquake waveform samples and276

155 K non-earthquake samples. For the 198 K earthquake277

waveform samples, we create two datasets, with and without278

ground-truth P arrivals fixed at the third second to ensure279

the completeness of the earthquake waveform. The earthquake280

sample without fixed P locations has ground-truth P arrival281

randomly distributed, which satisfies the rules of making a282

single-event dataset described in Appendix B. We wonder283

whether the model can perform similarly on these two datasets284

to account for the model robustness toward the same dataset285

with different earthquake waveform locations.286

Our proposed RED-PAN is trained/validated on 500/100 K 287

samples, with a composition of 39.5% Taiwan single-event 288

earthquake waveform, 12% MMWA products of Taiwan data, 289

8% EEWA products of Taiwan data, 8.25% non-earthquake 290

waveform of Taiwan data, 12% STEAD single-event earth- 291

quake waveform, 12% MWA products of STEAD, and 8.25% 292

non-earthquake waveform of STEAD. 293

D. Goal-Oriented Data Augmentation 294

1) Mosaic Waveform Augmentation (MWA): The core idea 295

of MWA comes from the fact that earthquakes are triggered 296

frequently in a short time in regions of active seismici- 297

ties, such as Taiwan, southern California, and Japan. Thus, 298

it is common that several earthquake waveforms, includ- 299

ing the time-clipped earthquake waveform and superimposed 300

earthquake waveform, are concurrently visible under the pre- 301

diction window of models. To consider such conditions, 302

MWA generates semisynthetic earthquake waveforms by ran- 303

domly superimposing-two to four different/identical scaled 304

earthquake waveforms collected from the same recorder, 305

namely, the “mosaic waveform.” 306

2) Marching MWA (MMWA): As an extension of MWA, 307

MMWA further randomly shifts the waveform backwardly and 308

forwardly (which is the meaning of “marching”) to form a 309

triplet set: ωbackward, ωcenter, and ωforward [Fig. 1(c.1)]. Every 310

earthquake waveform in ωcenter is paired with P and S arrivals, 311

while those in ωbackward and ωforward may be time-clipped due 312

to random shifts. 313

3) EEW Augmentation (EEWA): Fast and accurate P 314

arrivals of large earthquakes on real-time seismograms enable 315

quicker activation of EEW systems and provide more reli- 316

able source parameter estimates. EEWA generates earthquake 317

waveforms with only P arrivals available for rapid P wave 318

detections, which might also be similar to some MMWA 319

products. While EEWA products include P phase waveforms 320

with a broader range of source–receiver distance and various 321

patterns of P phase features. All EEWA products include 322

an earthquake waveform of only the P phase available at 323

the end of the seismogram, with or without other earthquake 324

waveforms existing in the forepart [Fig. 1(c.2)]. This ensures 325

that the model could learn to characterize P arrivals under 326

background noise and interference of other seismic waves. 327

E. Seismogram-Tracking Median Filter (STMF) 328

In the scenario of making sliding predictions on continuous 329

data, the length of the model input, completeness of earth- 330

quake recordings, shape, and position under the prediction 331

window may influence the prediction results even for the 332

same earthquake waveform. Among them, the completeness 333

of earthquake recordings and shape is directly related to 334

the source–receiver distance, source mechanisms, recorder 335

responses, and background noise. Also, due to the dynamic 336

input characteristics of sliding predictions, the model will 337

make predictions on time-clipped earthquake waveforms. The 338

longer the earthquake waveform, the less time the entire 339

earthquake waveform can be viewed by the model, while the 340

length of the model input determines the maximum length 341
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TABLE I

STATIC PREDICTION PERFORMANCE ON THE STEAD AND TAIWAN DATASET

of the entire earthquake waveform it can accommodate. The342

deep-learning-based model can have different phase arrival343

interpretations according to waveform completeness under the344

prediction window. Therefore, considering the physical restric-345

tions between the model input length and waveform length,346

we determine the output pdfs by storing the corresponding347

model output values of repeatedly predicted data samples and348

taking the median value as the STMF output as soon as the349

prediction window slides across all the samples. By doing so,350

we ensure that the STMF output is relatively objective than351

simply tracking the peak values for a few seconds, which the352

model might misjudge owing to the incompleteness of the353

time-clipped earthquake waveform.354

III. RESULTS355

We evaluated our model under different application scenar-356

ios and compared it with EQTransformer (EqT) [33], which357

is one of the most advanced models.358

1) For earthquake waveforms located under the model pre-359

diction window, such as those encountered during phase pick360

revision [24], we benchmark phase picking and earthquake361

waveform detection performance on the Taiwan dataset and362

STEAD [47].363

2) To evaluate the phase picking and earthquake waveform364

detection performance on continuous data, we benchmark the365

model on the 2019 Ridgecrest Mw7.1 earthquake sequence366

with a ground-truth catalog [24] developed by template match-367

ing algorithm (TMA) [49].368

3) For the (near) real-time P arrival detection, we evaluated369

models on event-based seismograms collected from two dense370

seismic networks in Taiwan, P-alert [50] and Taiwan Strong371

Motion Instrumentation Program (TSMIP) [51]. We wonder372

how much data are required for models to trigger P arrivals373

using the limited length of earthquake waveform and how374

accurate the P arrival triggers are.375

A. Static Prediction Performance376

In this section, we evaluate the model performance on the377

test dataset of STEAD and the Taiwan dataset in the length378

of 6000 samples (Table I). We compare our RED-PAN(60 s) 379

model with EQTransformer (here, we denote it as “EqT” [33]), 380

which has the maximum separation between P and S 381

arrivals of 49.53 s in the training data. The raw waveform 382

and waveform bandpassed at 1–45 Hz are the inputs for 383

RED-PAN(60 s) and EqT, respectively. The threshold for true 384

picks is the 0.5-s-long absolute time difference between the 385

predicted one and the ground truth; the picks with peak 386

values larger than 0.3 are counted as positive picks. Here, 387

we use the threshold value of 0.3 used by EqT [33] for fair 388

comparisons. For detection mask evaluation, the confusion 389

matrix is constructed on the detection results of earthquake 390

and non-earthquake samples. We consider a true positive if 391

the mean value of mask function wrapping P and S arrivals 392

of an earthquake is larger than 0.5, while the sample would be 393

characterized as a non-earthquake sample if the same criterion 394

cannot be met. As shown in Table I, RED-PAN(60 s) and EqT 395

perform similarly on STEAD, but RED-PAN(60 s) generally 396

outperforms EqT on the Taiwan dataset. On the other hand, 397

considering the prediction results of the Taiwan test data with 398

or without a fixed P location, EqT performance differentiates. 399

While RED-PAN(60 s) performs quite similarly, indicating 400

more stable prediction results for the same earthquake wave- 401

form with different locations under the same receptive field. 402

B. Continuous Data Examination 403

To achieve objective evaluations on continuous data process- 404

ing, we apply the RED-PAN models and EqT with the STMF 405

strategy on continuous data gathered from 22 stations located 406

in the Ridgecrest region, southern California, from 4 July, 407

2019 16:00 to 8 July, 2019 00:00 (UTC + 0). The ground 408

truth of the earthquake event catalog with magnitudes larger 409

than 0 is obtained from TMA described in [24], which left us 410

34 381 event templates. The location of event templates lies 411

in the longitudinal range from −118.1215 to −117.2421 and 412

the latitudinal range from 35.4991 to 36.2495. The sliding 413

prediction window is 4 s in this test. 414

Authorized licensed use limited to: National Taiwan University. Downloaded on December 05,2022 at 02:52:04 UTC from IEEE Xplore.  Restrictions apply. 



2900111 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 2. Continuous data examination results of 22 stations in the Ridgecrest
region, southern California, from 4 July, 2019 16:00 to 8 July, 2019 00:00
(UTC + 0). (a) Source–receiver distance histogram of valid event waveform
detection of all the stations. (b) Event magnitude histogram of ever detected
events.

Valid event waveform detection is counted as the prediction415

results fulfill the following statements: 1) both the P and S416

pick probabilities are larger than 0.3; 2) the mean value of417

the detection mask between the P and S picks is larger than418

0.5; and 3) the positions of predicted P–S pairs should lie419

within [αψ,Zp − 1.5 s, αψ,Zs + 1.5 s], where αψ,Z is the labeled420

phase arrivals that are forward-estimated by seismic velocity,421

model, F3DT [52], and source–receiver distance between the422

hypocenter ψ and the station Z .423

Restricted to the data preprocessing step of Z score stan-424

dardization, an event with a large amplitude under the pre-425

diction window would compress other signals. The longer the426

model can accommodate, the more data space would be com-427

pressed. Hence, event waveforms of small amplitude might428

approximate the background noise level if large-amplitude429

events are recorded close in time, making them undetectable.430

We compare the performance of EqT and our proposed431

RED-PAN models with input lengths of 30 and 60 s, denoted432

as RED-PAN(30 s) and RED-PAN(60 s), respectively, (Fig. 2).433

The way RED-PAN(30 s) is trained is identical to that434

of RED-PAN(60 s) while having the maximum separation435

between P and S arrivals of 25 s in the training data.436

In summary, EqT detects 12 283 events (36%) with437

55 548 valid event waveform detections at all the stations;438

RED-PAN(60 s) detects 24 339 events (71%) with 153 472439

valid event waveform detections, and RED-PAN(30 s) detects440

28 824 events (84%) with 189 794 valid event waveform detec-441

tion. Considering valid event waveform detection at all the sta-442

tions, RED-PAN models outperform EqT across all the ranges443

of source–receiver distances [Fig. 2(a)]. RED-PAN(60 s) has444

2.7 times more valid event waveform detection than EqT445

under the same receptive field. RED-PAN(30 s) detects446

more earthquake waveforms with small magnitudes and short447

source–receiver distances, which might appear as relatively448

small-amplitude waveforms. Such results may verify the argu-449

ment that earthquake waveforms with smaller amplitudes are450

Fig. 3. Examples of real-time data processing using RED-PAN(60 s) model
on raw seismograms starting from 24 March, 2022 00:37:10.00 (UTC + 0),
recorded at the three stations, (a) CHKH, (b) EHYH, and (c) ECB, closest to
the epicenters. The seismograms recorded an ML 4.7 earthquake followed by
an ML 5.3 earthquake that took place very close in time and space, causing
the waveform of the latter one to superimpose on the former one. The first row
shows real-time prediction pdfs, and the second shows the pdfs obtained with
STMF processing. We renew the STMF pdfs when the prediction window
moves on to the next time stamp. Thus, the length of renewed pdfs is equal
to the prediction interval. The red frame represents the prediction window
with a 0.05-s sliding interval. We perform peak detection on the P phase
time function at each prediction time step to determine P arrival triggers.
The trigger is issued if the peak value is larger than 0.3 existing within the
first second of the incoming data, e.g., in the range of [tcurrent − 1, tcurrent].
The dotted black lines label the P phase triggers.

likely to be missed by a model with a longer input length if 451

large-amplitude events exist closely in time. 452

C. Efficiency and Accuracy of P Arrivals Triggering 453

The efficiency of picking P arrivals of earthquakes urgently 454

for EEW depends on two key factors: 1) the inference 455

speeds of the algorithms, which are 0.0150 and 0.0261 s for 456

RED-PAN(30 s) and RED-PAN(60 s), respectively, using an 457

Intel (R) Xeon (R) W-2125 CPU at 4.00 GHz in 1000 times, 458

on average; and 2) how long the earthquake waveform is 459

required for algorithms to pick P arrivals. 460

Fig. 3 demonstrates a scenario template showing how 461

RED-PAN(60 s) processes the incoming data, with the 0.05-s 462

interval of sliding prediction on the three-component seis- 463

mograms sampled at 100 Hz. The seismograms in Fig. 3 464

show an ML 4.7 earthquake waveform superimposed by an 465

ML 5.3 earthquake waveform that occurred in east Taiwan 466

(Fig. 4). The ML 5.3 earthquake has met the criteria for issuing 467

earthquake warnings, but the current system has missed the 468

event. The first row shows the pdfs of the model current output, 469

spanning from (tcurrent − 60) s to the current time tcurrent, rep- 470

resented by the red frame, which can provide information for 471

real-time applications. For real-time detection of the P-wave, 472

we perform peak detection on the current output of the P 473
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TABLE II

P ARRIVAL PICKING EFFICIENCY ON P -ALERT AND TSMIP DATA

phase time function and issue a triger if its peak value is474

larger than 0.3 within the first second of the incoming data,475

e.g., in the range of [tcurrent − 1, tcurrent ]. The second row is the476

STMF pdfs obtained with STMF processing, with the length477

of the renewed data equal to the model sliding interval. When478

the model moves on to the next time stamp with a sliding479

interval, it will no longer process the previously monitored480

waveform in equal length, and then the corresponding STMF481

pdfs of these data could be renewed. In Fig. 3, the peaks (i.e.,482

triggers) detected within the range of [tcurrent − 1, tcurrent] with483

value larger 0.3 from model output P phase time function484

are labeled with dotted lines. We also provide an animation485

of Fig. 3: https://youtu.be/582yB1zigWE. In this example, our486

PED-PAN model can accurately detect the P-waves in (near)487

real-time of the ML 5.3 earthquake to avoid missing the event488

in the current EEW systems.489

To evaluate the shortest amount of waveform that RED-PAN490

requires to characterize P arrivals, we additionally collected491

seismograms recorded by two dense strong motion seismic492

networks in Taiwan, P-alert [50] and the TSMIP [51]. This493

study’s model training data do not include all TSMIP and494

P-alert data. We used the top ten nearest station recordings495

from 163 events of the P-alert network and 274 events of the496

TSMIP network (Fig. 4) from 2013 to 2019. The magnitude of497

events ranges from 4.0 to 6.91, and most of the seismograms498

are collected from stations with source–receiver distances499

less than 25 km. We compare the performance between the500

STA/LTA algorithm tuned by CWB experts, RED-PAN(30 s),501

RED-PAN(60 s), and models separately trained using the502

MMWA and MWA strategy only. The true positive trigger503

is counted when the P arrival is detected within a ±1 s504

window around the ground truth with probability larger than505

0.3 and lies in the range of [tcurrent − 1, tcurrent] under the506

prediction window. The false negative trigger is counted if507

no trigger is detected. We compute the true positive rate (or508

recall rate) to estimate the model performance on the task of509

triggering P arrivals. In this test, we made sliding predictions510

with the interval of 0.05 s on the collected TSMIP and511

P-alert data. For online applications, the decision of prediction512

interval must also consider the model inference time on the513

installed machine, the algorithms’ buffering, data flow, and514

other background programs.515

Fig. 5 shows the recall rate of P arrivals triggering across516

different source–receiver distances and reaction times (i.e.,517

length of waveform needed) to trigger P arrivals using three-518

component/vertical component data. The histograms of the519

true positive P triggers show that the RED-PAN models 520

outperform all source–receiver distances and perform better 521

on the TSMIP data than on the P-alert data. Table II lists 522

the P arrival picking efficiency on the P-alert and TSMIP 523

data. Generally, the RED-PAN models outperform both the 524

P-alert and TSMIP network data in terms of recall rate 525

and the average length of the waveform required for trig- 526

gering. Among the RED-PAN models, the performance of 527

RED-PAN(30 s) and RED-PAN(60 s) is comparable. On the 528

other hand, an obvious performance gap exists between the 529

TSMIP data and the P-alert data of all the compared methods, 530

including the STA/LTA algorithm. We attribute this to the 531

data quality difference between the traditional sensors and the 532

sensors of micro-electro-mechanical systems (MEMS) that are 533

composed of the P-alert network. As [53] concludes, by far, 534

the strong self-noise and lower responses at a low frequency 535

of MEMS compared with the traditional devices make part of 536

the seismic background noise unrecognizable. Same conditions 537

could also be observed in the P-alert data if the amplitude 538

of ground motion is not large enough, making it require 539

more data to recognize the seismic P phase. In addition, 540

Fig. 6 demonstrates the triggering error comparison between 541

RED-PAN(60 s) and the STA/LTA method tuned by CWB 542

experts, where only time misfits less than 1 s are plotted 543

since the STA/LTA method misses or overlooks a portion 544

of P arrivals as shown in Table II. Fig. 6 shows that the 545

misfits of P arrival triggers from both the RED-PAN(60 s) 546

and STA/LTA methods lie in a ±0.1 s interval, while picks 547

of RED-PAN(60 s) are closer to the ground truth with a 548

higher recall rate (Table II). In practical EEW applications, 549

different criteria are used to avoid false positive picks leading 550

to false alarms. For example, a triggered P wave needs checks 551

with other criteria (e.g., amplitude, signal-to-noise ratio, and 552

P-wave peak displacement for magnitude estimate) for a valid 553

pick in the Taiwan EEW system [8]. In addition, a stable 554

hypocenter derived from qualified P picks at different stations 555

and the estimated ground shaking larger than the threshold are 556

required before an EEW can be issued. 557

IV. DISCUSSIONS 558

A. Earthquake Waveform Pattern and Model Generalization 559

How earthquake waveform pattern influences the model 560

performance is usually termed as model generalization in 561

seismic phase picking and earthquake detection task, which 562

is directly related to earthquake source parameters (i.e., focal 563
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Fig. 4. Distribution of data used to evaluate P arrival picking efficiency.
(a) Seismic map of used events and seismic networks. (b) Data distribution of
the P-alert and TSMIP over magnitude, SNR, and source–receiver distance.
The two pink stars denote the ML 4.7 earthquake and ML 5.3 earthquake that
occurred on 2022-03-24 00:37 (UTC + 0).

mechanisms and depths), the medium which seismic waves564

propagate through, and recording environments. In Table I,565

10%–20% true positive ratio gap of the static prediction566

performance exists between EqT and RED-PAN(60 s) on the567

Taiwan dataset, which can be illustrated by the precision and568

recall rate of phase picks. The precision rate is similar between569

RED-PAN(60 s) and EqT, but the recall rate of EqT is much570

lower than that of RED-PAN(60 s), indicating more false571

negatives. Such a result implies that both RED-PAN(60 s)572

and EqT could find the accurate and similar position of phase573

arrivals, while EqT is not that confident in the Taiwan dataset,574

suggesting that the training data specific to the region of575

interest are no less critical than the model architecture design.576

B. Insights of Goal-Oriented Data Augmentation577

In Table II, even when trained without EEWA, the MMWA578

model can trigger many P arrivals, which works as antic-579

ipated since the movement of “marching” would produce580

a time-clipped earthquake waveform that only contains the581

P phase. The performance of the MWA model, in which582

the training strategy is similar to [33], [54], could support583

the above argument. It can hardly pick P arrivals using584

time-clipped earthquake waveforms without marching wave-585

forms in the training data. In addition, in Fig. 5, the per-586

formance discrepancy on P arrival triggering between the587

RED-PAN models and MMWA model lies in samples of more588

considerable source–receiver distances, where the performance589

of the MMWA model drops with increasing source–receiver590

distance. We attribute such results to the training data diversity591

of time-clipped earthquake waveforms containing only the P592

phase. MMWA products have a limited number of samples593

with longer source–receiver distances since they can hardly594

be accommodated within a 60-s window with other earth-595

quake waveforms to compute mosaic waveforms. However,596

the computation of EEWA products is not limited to the597

source–receiver distance of the earthquake waveform so that598

RED-PAN can trigger P arrivals with a broader range of599

source–receiver distances.600

Fig. 5. Histograms of the recall rate of P arrivals triggering and triggering
reaction time (i.e., length of waveform needed to trigger P arrivals) of (a.1)
and (a.2) P-alert and (b.1) and (b.2) TSMIP networks. Four models are
performed on both three-component and vertical component data, represented
by transparent lines and solid lines, respectively. The MWA model and
MMWA model separately indicate model trained with single-event earthquake
waveform along with MWA and MMWA strategies. Generally, the RED-PAN
models outperform across source–receiver distances, and most RED-PAN
picks are triggered using less than 0.2 s of data.

Fig. 6. Histograms of triggering error of RED-PAN(60 s) and STA/LTA
methods tuned by CWB expert on (a) P-alert and (b) TSMIP network.

V. CONCLUSION 601

In this study, we trained our RED-PAN model with 602

a recurrent residual U-Net-based multitask attention net- 603

work in a self-supervised manner, which dynamically adjusts 604

the weightings of seismic phase picking task and the 605

task of computing earthquake detection mask during train- 606

ing. The core idea of this study is to leverage the 607

goal-oriented data augmentation techniques, MWA, MMWA, 608

and EEWA, which remarkably improve the model perfor- 609

mance to achieve continuous and real-time data process- 610

ing. Our research shows that the performance of the 611

deep-learning-based models in different application scenar- 612

ios, such as static prediction and continuous/real-time data, 613

is highly related to the variations in training data. Aided 614

by the rapid developments of deep learning studies, more 615

advanced architectures have been applied to seismological 616

problems with various input and target outputs. However, 617

unlike computer vision or natural language processing, the 618
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input relevant in our field, seismogram, is nonstationary.619

Our perspective of developing models with goal-oriented620

data augmentation may provide another trajectory to621

embark on.622

APPENDIX A623

FEATURES TRANSMISSION AMONG ATTENTION624

NETWORKS AND RECURRENT RESIDUAL U-NET625

Let us denote R(j), j ≥ 1 as the shared features in the626

jth level RRC layer of the shared recurrent residual U-Net627

and â(j)i as the learned attention gate (or mask) in the layer628

j for task i. The task-specific features â(j)i are computed629

by elementwise multiplication of attention gates and shared630

features. As Fig. 1(b) shows, our attention modules take two631

inputs: the output features of the shared RRC layer R( j);632

the concatenation of previous attention features â(j−1)
i and the633

shared RRC layer R( j−1). Apart from the first attention module634

that takes only R(1) as input features, other task-specific635

attention features computed from the encoder and the decoder636

are formulated as follows:637

â(j)i,enc = h( j)
i

�
g( j)

i

�
f ( j)
i

��
â(j−1)

i,enc ; R(j−1)
���

� R(j)
�
, j ≥ 2638

(4)639

and640

â(j)i,dec = g( j)
i

�
f ( j)
i

��
u( j)

i

�
â(j−1)

i,dec

�
; R(j−1)

���
� R(j) (5)641

where � denotes the elementwise multiplication; f ( j)
i and642

g( j)
i are the convolutional layers of [1 × 1] kernels with643

batch normalization, following ReLU and sigmoid activation,644

respectively; h( j)
i and u( j)

i represent the convolutional down-645

sampling and upsampling layers that enable matching of the646

corresponding resolution. For more details about RRC input647

and output formulations for seismograms, we refer to [34].648

APPENDIX B649

DETAILS OF SINGLE-EVENT DATASET650

Apart from the complete earthquake waveform in STEAD,651

we also consider that the deep learning algorithms are capable652

of picking and associating seismic P and S arrivals with653

incomplete waveforms that might be informative enough.654

We define the length of basic informative earthquake wave-655

form as γbasic = m × αres + �P, with m times the absolute656

time residual between labeled P and S arrivals (αP and αS) in657

seconds: αres = |αS−αP|, αres > 0; and �P = 0.5 s the potential658

P arrival picking error. Also, with γbef-P and γaft-basic defined659

as randomly distributed space before the point (αP − �P) and660

after the endpoint of γbasic, the length for each informative661

earthquake waveform sample γtotal in the Taiwan dataset can662

then be formulated as follows:663

γtotal = γbef-P + γbasic + γaft-basic (6)664

where m is controlled by αres as follows:665

m =

⎧⎪⎨
⎪⎩

2, if αres < 20

1.5, if 20 ≤ αres < 25

1.2, if 25 ≤ αres < 40.

666

Fig. 7. RED-PAN input template. (a) Input seismogram and the correspond-
ing target functions for the seismic phase picking modules (blue line) and
earthquake waveform detection modules (green line). (b) Confusion matrix
elements for phase picking evaluation.

Not limited to (6), for 40 ≤ αres < 50, we simply fixed 667

labeled P at the fifth second. Although some of the earthquake 668

waveforms are not complete, it is possible that the deep 669

learning algorithms could characterize them with the available 670

background noise. A model input template is shown in Fig. 7, 671

showing the target functions for the seismic phase picking 672

and earthquake waveform detection module, and the confu- 673

sion matrix elements for seismic phase picking performance 674

evaluation. 675

APPENDIX C 676

FORMULATIONS OF MARCHING MWA 677

Let τ be the length of the marching window. First, we slice 678

a base three-component earthquake waveform as a function of 679

time, ωbase(t), with a length of (τbackward+60+τforward) seconds. 680

Other earthquake waveforms are then randomly superimposed 681

after the earthquake waveforms on the base waveform orderly, 682

within the range of t|τbackward+60
τbackward

, forming a triplet set of 683

60-s-long waveform after marching backwardly and forwardly 684

[Fig. 1(c.1)] 685

ωbackward = ωbase(t)|−τbackward+60
−τbackward

(7) 686

ωcenter = ωbase(t)|τbackward+60
τbackward

(8) 687

ωforward = ωbase(t)|τbackward+60+τforward
τbackward+τforward

(9) 688

where t ∈ [−τbackward, . . . , 0, . . . , 60+τforward]. In ωcenter, each 689

earthquake waveform is paired with P and S arrivals, while 690

ωbackward and ωforward might include time-clipped earthquake 691

waveforms with unpaired P and S arrivals. Note that the SNR 692

of the superimposed P arrivals must be larger than 1.5 on 693

the vertical channel high-passed at 2 Hz, and the SNR of 694

“mosaic joints,” where other earthquake waveforms start to 695

superimpose, must be lower than 2 across all the channels 696

on waveform high-passed at 2 Hz. The SNR limitations 697

of P arrivals ensure their visibility, and those of mosaic 698

joints prevent mosaic waveforms from having unnatural abrupt 699

changes every superimposition. 700
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