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RED-PAN: Real-Time Earthquake Detection and
Phase-Picking With Multitask Attention Network

Wu-Yu Liao, En-Jui Lee

Abstract—1In this article, we show that the real-time
earthquake detection and phase picking with multitask attention
network (RED-PAN) can carry out earthquake detection
and seismic phase picking on real-time and continuous data
with appropriate data augmentation. Goal-oriented data
augmentations materialize the capability of RED-PAN. Mosaic
waveform augmentation (MWA) synthesizes data conditioned by
superimposed earthquake waveforms, marching MWA (MMWA)
extends MWA to allow the dynamic input of seismograms, and
earthquake early warning augmentation (EEWA) enables to
identify P arrivals using the early part of P-wave waveforms. For
stable P and S arrival probability distribution functions (pdfs) of
continuous recordings, we use the median values of phase predic-
tions at each time point until the model scans through, which we
term the seismogram-tracking median filter (STMF). For real-
time P arrival detection, we use a threshold (0.3) on the real-time
P arrival pdf as the trigger criterion. We examined our proposed
strategy in different application scenarios. For the dataset of
the fixed-length samples, our RED-PAN(60 s) model performs
similar to EQTransformer (EqT) on the STanford EArthquake
Dataset (STEAD) and outperforms the Taiwan dataset. For
continuous data examination of the 2019 Ridgecrest earthquake
sequence, the number of earthquake waveforms detected by our
RED-PAN(60 s) model is 2.7 times the number of EqT under the
same receptive field (60-s-long seismogram). In the application
of earthquake early warning (EEW), our RED-PAN(60 s) model
only requires the P-wave waveform about 0.13 s long from
the P-alert and 0.09 s long from the Taiwan Strong Motion
Instrumentation Program (TSMIP) network. The source code is
available at https://github.com/tso1257771/RED-PAN.

Index Terms—Data augmentation, multitask learning (MTL),
real-time earthquake monitoring.
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I. INTRODUCTION

ARTHQUAKE monitoring is the foundation of obser-

vational seismology, which is data-driven and aims to
explore the dynamics and mechanisms of earthquakes. For
short-term earthquake monitoring, earthquake early warning
(EEW) systems can warn of impending ground shaking as
an earthquake strikes [1], [2], [3]. The principle of EEW is
to forecast seismic ground motions and disseminate alerts to
different end users to take precautionary actions. According to
the range of early warning areas, EEWs can be categorized as
onsite warnings that issue alerts locally and regional warnings
that issue alerts across a broader range of areas away from
the hypocenter. Both the warning categories are based on
observations of earthquake ground motions.

For regional warning, the source-based algorithms are one
of the most popular choices. It relies on the observations of
earthquake waveforms and the corresponding seismic phases
recorded at stations over the seismic network [4], [5], [6], [7],
[8]. For instance, ElarmS [4] aggregates P arrival information
from several stations to determine source parameters, such
as earthquake location, origin time, and magnitude. Then the
spatial distributions of peak ground motions could be fore-
cast using attenuation functions or ground motion prediction
equations (GMPEs). The earthquake location and origin time
are estimated using the seismic velocity models and seismic
phase arrivals. Determination of magnitude using only a few
seconds of P-wave data could be estimations of P-wave
predominant frequency contents [1], [4] or predetermined
logistic regressions [9].

Similarly, onsite warning depends on early detection of
P-waves and forecasting impending peak ground motions
in situ using single-station methods [10], [11], [12]. Hence, the
earlier the P arrivals are detected, the faster the P-wave-based
EEW algorithm kicks off. The quality of the P arrival picking
determines whether the algorithms work as anticipated.

Due to the computational efficiency of the short-term aver-
age (STA)/long-term average (LTA) methods [13], they usually
serve as defaulting real-time P arrival pickers. However, sim-
ilar to other statistical algorithms that capture abrupt temporal
variations in amplitude or pattern (e.g., earthquake envelope
functions [14], autoregressive Akaike information criterion
(AR-AIC) [15], kurtosis function [16], skewness function [17],
[18], filtering [19], and particle motion polarization [20], [21],
[22]), these traditional pickers rely on heavy parameter tuning
and are error-prone under complex conditions, such as intense
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aftershocks [23],
amplitudes [23].
The deep-learning-based methods have recently signifi-
cantly improved P-wave detection in quality and quantity
using only a few seconds of P-wave data [26], [27]. More
advanced deep-learning-based methods use full waveforms to
detect earthquakes and/or pick both seismic P and § arrivals
at the same time [28], [29], [30], [31], [32], [33], [34], which
has the potential to provide more information for both the
purposes of long-term earthquake monitoring and cataloging
earthquakes for near-real-time applications [35], [36], [37].

The robustness and effectiveness of the deep-learning-
based methods [29], [30], [31], [32], [33], [34] have made
them emerging as baseline methods for processing the grow-
ing volume of continuous and real-time data. However,
we have seldom found recent deep-learning-based models
trained on datasets specific to real-time and continuous data,
in which earthquake waveforms might lack complete repre-
sentations of seismic sources. Here, we term such an incom-
plete earthquake waveform as a “time-clipped” earthquake
waveform. The model with fixed-length input deals with
time-clipped earthquake waveforms frequently when applied
to real-time/continuous data. A common strategy to determine
the model output values on continuous data is to track the
results of repeatedly predicted samples for only a few seconds.
We must note that the deep learning algorithms introduce a
considerable amount of nonlinearity such that models could
have different interpretations according to input data com-
pleteness. Our perspective is to track the model output until
the model scans through all the data to achieve stable and
objective output.

In this study, we propose a recurrent residual U-Net-based
multitask attention network for earthquake waveform detection
and seismic P/S arrival picking, in which a recurrent residual
U-Net serves as a feature-sharing backbone network, and
two attention networks tailored with different task learning.
In addition, we present goal-oriented data augmentation tech-
niques to detect P arrivals in real-time and stably process con-
tinuous data with conditions: successive events, time-clipped
earthquake waveforms, and others. Our findings point out
common problems overlooked by many studies: the training
data are not specific to their usages, and their applications
to continuous data were not model-objective. We promote
model robustness on continuous and real-time data processing
by adopting appropriate data augmentation techniques, which
contribute a notable point of view to deep learning applications
in observational seismology.

[24], [25] and P-waves with very small

II. METHODS

Unlike the single-task seismic phase picking model of [34],
in this study, we extend it to the multitask model, in which the
attention gates construct the task-specific attention networks.
In addition, we also use different data augmentation tech-
niques on the training datasets and demonstrate performance
improvements on continuous data and real-time detection. This
section introduces the model architecture, the dataset in use,
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the goal-oriented data augmentation method, and how we
process continuous data. The goal-oriented data augmentation
strategies materialize the capabilities of real-time earthquake
detection and phase picking with multitask attention net-
work (RED-PAN): 1) mosaic waveform augmentation (MWA);
2) marching MWA (MMWA); and 3) EEW augmentation
(EEWA). MWA aims to pick and associate seismic P and S
phases of independent earthquake waveforms on seismograms
with multiple earthquake waveforms existing under the predic-
tion window. MMWA is an extension of MWA that shifts the
data backwardly and forwardly, helping to stabilize the model
output value when making sliding predictions. EEWA allows
early detection of seismic P arrivals for EEW. Considering the
fixed length of the RED-PAN input and output, we adopt the
seismogram-tracking median filter (STMF) strategy that tracks
the prediction results and takes the corresponding median
values of each sample when making sliding predictions on
dynamic input continuous data.

A. Recurrent Residual U-Net-Based Multitask Attention
Network

Multitask Learning (MTL) refers to the model learning
fashion that enables the execution of multiple tasks in a single
network by sharing global representations between different
tasks [38], [39]. Generally, MTL has multiple loss functions
to optimize and is widely used in the field of computer
vision [40], [41] and natural language processing [42]. The
MTL fashion is usually more desirable and efficient in prac-
tical usage in terms of memory, inference speed, and model
setup. MTL poses two critical challenges to sharing informa-
tive features among different tasks: 1) how to share, namely,
model architecture design; and 2) how to balance loss from
different tasks. Under the framework of a multitask attention
network [43], our adaptive proposal RED-PAN is composed
of a recurrent residual U-Net [34], [44] as the backbone
network for global feature-sharing, and two mounted attention
subnetworks for task-specific feature learning (Fig. 1). Each
attention network is computed upon several attention modules
in an encoder—decoder manner, which has the same depth as
the recurrent residual U-Net. The attention modules apply soft
attention gates [43] on the corresponding recurrent-residual
convolution (RRC) layers [45] of shared recurrent-residual
U-Net at all the levels [Fig. 1(a) and Appendix A], which
serve as feature selectors tailored with each task. The model
outputs phase time functions for picking seismic phases and
earthquake waveform detection functions from the last layer
of the two attention subnetworks separately. Both the attention
subnetworks correlate with the backbone network, and the
total loss from the weighted loss of attention subnetworks
would be minimized after training. Thus, the shared recurrent
residual U-Net could learn generalized representations across
all the tasks, and each attention network could jointly learn
task-specific features in a self-supervised manner.

The input of RED-PAN(60 s) is the Z score standardized
raw three-component seismograms with a length of 6000 sam-
ples, which corresponds to 60-s-long seismograms with a
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Fig. 1. Multitask model architecture and goal-oriented data augmentation templates for seismic phase picking and earthquake event detection. (a) Model

consists of a recurrent-residual U-Net as the backbone and two mounted task-specific attention networks that share information in-between the backbone.
The model inputs are the three-component seismograms, and the attention networks of the model output seismic phase picking functions (attention sub-net I)
and earthquake waveform detection functions that wrap every P—S pair (attention sub-net II). Here, RRC operation refers to RRC operations. Each attention
sub-net is composed of several gated attention layers & corresponding to the gating signal, or RRC outputs R of recurrent residual U-Net at all the depths.
Feature transduction between & and R relies on the attention gate mechanism. (b) Details of the RRC operation and gated attention layer computation for
constructing the attention network. (c.1) Triplet set of MMWA products that show the backwardly and forwardly shifting of the centered quasi-synthetic
waveform. (c.2) Templates of EEWA products with the black and red dashed lines denoting P and S phase arrivals, respectively. The first template shows the
waveform of the first few seconds of the P-wave recorded under background noise interference. The second and third quasi-synthetic templates, respectively,
show the waveform that the first few seconds of the P waves recorded under the interference of another/the other two earthquake waveforms.

100-Hz sample rate. The outputs are two sets of vectors for
seismic phase picking and earthquake waveform detection
(Figs. 1 and 7). The target functions for the seismic phase pick-
ing module are composed of three phase time functions. The
first two functions are P and S phase time functions, which are
the truncated Gaussian functions with the standard deviation
of 0.2 and 0.3 s centered at labeled P and S arrivals. Other
samples are padded with O to fulfill the length of 6000 point-to-
point samples. The last function of seismic phase picking mod-
ule is “Others” that the probability distribution function (pdf)
is calculated as: target(Others) = 1 — target(P) — target(S).
For every time step, the summation of the three-channel
target functions is 1, so we could apply softmax normalized
exponential function to set probabilities in the output layer for
the phase picking module. Note that the standard deviation
for the labeled phase inherently represents the labeling misfits
of the ground truth. For model calibration, we have conducted
experiments to find the optimal standard deviation of the trun-
cated Gaussian function of the P and S phases of the Taiwan
dataset [34]. The target functions for the earthquake waveform
detection module are composed of two pdfs: 1) the box-car-
like function wrapping a P and S arrival pair [abbreviated
as “EQ mask” in Figs. 1(a) and 7] and 2) “Others” computed
as: target(Others) = 1 — target(EQmask). The data space
of “EQ mask” between the ground truth P and S arrivals

is filled with 1. The front is replaced by the P phase time
function (half truncated Gaussian function) before ground-
truth P arrival, and the same steps are used for the tail of
the box car using the S phase time function (Fig. 7). Also,
we apply the softmax normalized exponential function to set
probabilities in the output layer for the earthquake waveform
detection module. The loss function H for the two tasks is
defined in terms of cross-entropy between the softmax normal-
ized predicted functions q and the corresponding ground-truth
target functions p as follows:

3
Hpicking (0, @) = — Y > _pe(¥)logq.(x) (1)

2
HeQmask (P, @) = — Y > _pe(¥)logqc(x).  (2)

In (1) and (2), x refers to the time step and c is the number
of output functions for each task.

B. Balancing Loss From Different Tasks

Generally, the loss function for k-task learning is defined
as the weighted sum of different task losses. Training MTL
models have difficulty striking a balance between different
tasks, which is particularly tedious for manual tuning. Grad-
Norm [46] learns to average task weighting over time by
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considering the rate of change in loss for different tasks, which
requires access to the internal gradients of the model. Simi-
larly, here we adopt a dynamic weight average (DWA) [43]
strategy that considers only numerical task loss. Let Lk denote
the loss function for task k. The task-specific weighting Ak is
defined as follows:

K xexp(wx(I-1)/H) N Li(I—-1)
) = s wma—nmy > TRy
3)

Here, I represents training epoch iterations, and we set
wi(I) =1 for I < 2. wy(-) calculates the relative descending
rate, which is then scaled by the temperature scaling factor
H. A larger H results in more even distribution weightings
among different tasks, and we set H 2 in this study.
Furthermore, (3) can be considered the multiplication of
the softmax operator and constant K, which ensures that
> 4i(I) = K. Therefore, in this study the total loss in the
training epoch 7 could be calculated as follows: Zi Ak (I)Hk,
where k = 1,2 represents the phase picking task and the
earthquake waveform detection task.

C. Dataset

In this study, we collect seismograms sampled at 100 Hz
from the Taiwan dataset and STanford EArthquake Dataset
(STEAD) [47] for model training, validation, and testing.
Seismograms of the Taiwan dataset are recorded by the
Central Weather Bureau (CWB) network and Broadband Array
in Taiwan for Seismology (BATS) [48], with data gathered
from 2012 to 2018 used for model training and validation and
those gathered from 2019 used for model testing. To ensure
that the model can characterize earthquake waveforms at
any possible location within the prediction window, we slice
and randomly locate the earthquake waveform of the Taiwan
dataset for each sample. Different from our Taiwan dataset,
the earthquake waveform of STEAD is located at the forepart
of the seismogram so that a complete earthquake waveform
can be well-presented. On the other hand, to meet the needs
of single-component seismic recorders and recording inter-
ruptions, we randomly padded the waveform with zeros by
fractions or dropped some channels. The STEAD dataset
used for model training and testing in this study is the same
as that of [33], which leaves 880 K earthquake waveforms
and 200 K non-earthquake waveforms for model training
and 103 K earthquake waveforms and 23.5 K non-earthquake
waveforms for benchmarking. The Taiwan testing dataset
is composed of 198 K earthquake waveform samples and
155 K non-earthquake samples. For the 198 K earthquake
waveform samples, we create two datasets, with and without
ground-truth P arrivals fixed at the third second to ensure
the completeness of the earthquake waveform. The earthquake
sample without fixed P locations has ground-truth P arrival
randomly distributed, which satisfies the rules of making a
single-event dataset described in Appendix B. We wonder
whether the model can perform similarly on these two datasets
to account for the model robustness toward the same dataset
with different earthquake waveform locations.
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Our proposed RED-PAN is trained/validated on 500/100 K
samples, with a composition of 39.5% Taiwan single-event
earthquake waveform, 12% MMWA products of Taiwan data,
8% EEWA products of Taiwan data, 8.25% non-earthquake
waveform of Taiwan data, 12% STEAD single-event earth-
quake waveform, 12% MWA products of STEAD, and 8.25%
non-earthquake waveform of STEAD.

D. Goal-Oriented Data Augmentation

1) Mosaic Waveform Augmentation (MWA): The core idea
of MWA comes from the fact that earthquakes are triggered
frequently in a short time in regions of active seismici-
ties, such as Taiwan, southern California, and Japan. Thus,
it is common that several earthquake waveforms, includ-
ing the time-clipped earthquake waveform and superimposed
earthquake waveform, are concurrently visible under the pre-
diction window of models. To consider such conditions,
MWA generates semisynthetic earthquake waveforms by ran-
domly superimposing-two to four different/identical scaled
earthquake waveforms collected from the same recorder,
namely, the “mosaic waveform.”

2) Marching MWA (MMWA): As an extension of MWA,
MMWA further randomly shifts the waveform backwardly and
forwardly (which is the meaning of “marching”) to form a
triplet set: Wpackwards @center> aNd Wforwara [Fig. 1(c.1)]. Every
earthquake waveform in @cenr 1S paired with P and S arrivals,
while those in @Wpackward aNd Oforwara May be time-clipped due
to random shifts.

3) EEW Augmentation (EEWA): Fast and accurate P
arrivals of large earthquakes on real-time seismograms enable
quicker activation of EEW systems and provide more reli-
able source parameter estimates. EEWA generates earthquake
waveforms with only P arrivals available for rapid P wave
detections, which might also be similar to some MMWA
products. While EEWA products include P phase waveforms
with a broader range of source-receiver distance and various
patterns of P phase features. All EEWA products include
an earthquake waveform of only the P phase available at
the end of the seismogram, with or without other earthquake
waveforms existing in the forepart [Fig. 1(c.2)]. This ensures
that the model could learn to characterize P arrivals under
background noise and interference of other seismic waves.

E. Seismogram-Tracking Median Filter (STMF)

In the scenario of making sliding predictions on continuous
data, the length of the model input, completeness of earth-
quake recordings, shape, and position under the prediction
window may influence the prediction results even for the
same earthquake waveform. Among them, the completeness
of earthquake recordings and shape is directly related to
the source-receiver distance, source mechanisms, recorder
responses, and background noise. Also, due to the dynamic
input characteristics of sliding predictions, the model will
make predictions on time-clipped earthquake waveforms. The
longer the earthquake waveform, the less time the entire
earthquake waveform can be viewed by the model, while the
length of the model input determines the maximum length
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TABLE I
STATIC PREDICTION PERFORMANCE ON THE STEAD AND TAIWAN DATASET
Dataset | Type Model TruePositive (%) | Mean (s) | std (s) | Precision | Recall | F1 score | MAE (s)
P RED-PAN(60s) 0.9822 -0.0160 0.0790 0.9890 0.9947 0.9919 0.0435
EqT 0.9894 -0.0034 0.0297 0.9961 0.9941 0.9951 0.0110
STEAD S RED-PAN(60s) 0.9541 -0.0108 0.1199 0.9670 0.9905 0.9786 0.0764
EqT 0.9389 -0.0196 0.1051 0.9810 0.9649 0.9729 0.0662
Mask RED-PAN(60s) 0.9967 ) 0.9945 0.9967 0.9956 )
EqT 0.9993 0.9997 0.9993 0.9995
P RED-PAN(60s) 0.9496 0.0029 0.0778 0.9822 0.9747 0.9784 0.0414
EqT 0.8037 0.0255 0.1073 0.9690 0.8402 0.9000 0.0636
™ S RED-PAN(60s) 0.8900 0.0083 0.1317 0.9490 0.9539 0.9514 0.0855
EqT 0.6877 0.0447 0.1114 0.9726 0.7269 0.8320 0.0804
Mask RED-PAN(60s) 0.9854 ) 0.9931 0.9854 0.9892 )
EqT 0.8744 0.9979 0.8744 0.9321
p RED-PAN(60s) 0.9522 -0.0001 0.0778 0.9831 0.9761 0.9796 0.0422
EqT 0.7583 -0.0271 0.0373 0.9763 0.7865 0.8712 0.0334
™ S RED-PAN(60s) 0.8884 0.0086 0.1318 0.9491 0.9523 0.9507 0.0859
(fixP) EqT 0.6962 0.0465 0.1121 0.9707 0.7345 0.8362 0.0815
Mask RED-PAN(60s) 0.9914 ) 0.9932 0.9914 0.9923 )
EqT 0.8830 0.9979 0.8830 0.9370

fixP refers to the fixed P arrival location at the 300-th point of the sample; the bold style indicates better performance between
RED-PAN(60s) and EqT; the red text points out the obvious performance discrepancy of EqT on Taiwan testing dataset.

of the entire earthquake waveform it can accommodate. The
deep-learning-based model can have different phase arrival
interpretations according to waveform completeness under the
prediction window. Therefore, considering the physical restric-
tions between the model input length and waveform length,
we determine the output pdfs by storing the corresponding
model output values of repeatedly predicted data samples and
taking the median value as the STMF output as soon as the
prediction window slides across all the samples. By doing so,
we ensure that the STMF output is relatively objective than
simply tracking the peak values for a few seconds, which the
model might misjudge owing to the incompleteness of the
time-clipped earthquake waveform.

III. RESULTS

We evaluated our model under different application scenar-
ios and compared it with EQTransformer (EqT) [33], which
is one of the most advanced models.

1) For earthquake waveforms located under the model pre-
diction window, such as those encountered during phase pick
revision [24], we benchmark phase picking and earthquake
waveform detection performance on the Taiwan dataset and
STEAD [47].

2) To evaluate the phase picking and earthquake waveform
detection performance on continuous data, we benchmark the
model on the 2019 Ridgecrest M,,7.1 earthquake sequence
with a ground-truth catalog [24] developed by template match-
ing algorithm (TMA) [49].

3) For the (near) real-time P arrival detection, we evaluated
models on event-based seismograms collected from two dense
seismic networks in Taiwan, P-alert [50] and Taiwan Strong
Motion Instrumentation Program (TSMIP) [51]. We wonder
how much data are required for models to trigger P arrivals
using the limited length of earthquake waveform and how
accurate the P arrival triggers are.

A. Static Prediction Performance

In this section, we evaluate the model performance on the
test dataset of STEAD and the Taiwan dataset in the length

of 6000 samples (Table I). We compare our RED-PAN(60 s)
model with EQTransformer (here, we denote it as “EqT” [33]),
which has the maximum separation between P and S
arrivals of 49.53 s in the training data. The raw waveform
and waveform bandpassed at 1-45 Hz are the inputs for
RED-PAN(60 s) and EqT, respectively. The threshold for true
picks is the 0.5-s-long absolute time difference between the
predicted one and the ground truth; the picks with peak
values larger than 0.3 are counted as positive picks. Here,
we use the threshold value of 0.3 used by EqT [33] for fair
comparisons. For detection mask evaluation, the confusion
matrix is constructed on the detection results of earthquake
and non-earthquake samples. We consider a true positive if
the mean value of mask function wrapping P and S arrivals
of an earthquake is larger than 0.5, while the sample would be
characterized as a non-earthquake sample if the same criterion
cannot be met. As shown in Table I, RED-PAN(60 s) and EqT
perform similarly on STEAD, but RED-PAN(60 s) generally
outperforms EqQT on the Taiwan dataset. On the other hand,
considering the prediction results of the Taiwan test data with
or without a fixed P location, EqT performance differentiates.
While RED-PAN(60 s) performs quite similarly, indicating
more stable prediction results for the same earthquake wave-
form with different locations under the same receptive field.

B. Continuous Data Examination

To achieve objective evaluations on continuous data process-
ing, we apply the RED-PAN models and EqT with the STMF
strategy on continuous data gathered from 22 stations located
in the Ridgecrest region, southern California, from 4 July,
2019 16:00 to 8 July, 2019 00:00 (UTC + 0). The ground
truth of the earthquake event catalog with magnitudes larger
than O is obtained from TMA described in [24], which left us
34381 event templates. The location of event templates lies
in the longitudinal range from —118.1215 to —117.2421 and
the latitudinal range from 35.4991 to 36.2495. The sliding
prediction window is 4 s in this test.
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Fig. 2. Continuous data examination results of 22 stations in the Ridgecrest
region, southern California, from 4 July, 2019 16:00 to 8 July, 2019 00:00
(UTC + 0). (a) Source-receiver distance histogram of valid event waveform
detection of all the stations. (b) Event magnitude histogram of ever detected
events.

Valid event waveform detection is counted as the prediction
results fulfill the following statements: 1) both the P and §
pick probabilities are larger than 0.3; 2) the mean value of
the detection mask between the P and S picks is larger than
0.5; and 3) the positions of predicted P—S pairs should lie
within [al‘/,”z — 1.5, /"% + 1.5 s], where a¥Z is the labeled
phase arrivals that are forward-estimated by seismic velocity,
model, F3DT [52], and source—receiver distance between the
hypocenter y and the station Z.

Restricted to the data preprocessing step of Z score stan-
dardization, an event with a large amplitude under the pre-
diction window would compress other signals. The longer the
model can accommodate, the more data space would be com-
pressed. Hence, event waveforms of small amplitude might
approximate the background noise level if large-amplitude
events are recorded close in time, making them undetectable.
We compare the performance of EqT and our proposed
RED-PAN models with input lengths of 30 and 60 s, denoted
as RED-PAN(30 s) and RED-PAN(60 s), respectively, (Fig. 2).
The way RED-PAN(30 s) is trained is identical to that
of RED-PAN(60 s) while having the maximum separation
between P and S arrivals of 25 s in the training data.

In summary, EqQT detects 12283 events (36%) with
55548 valid event waveform detections at all the stations;
RED-PAN(60 s) detects 24339 events (71%) with 153472
valid event waveform detections, and RED-PAN(30 s) detects
28 824 events (84%) with 189 794 valid event waveform detec-
tion. Considering valid event waveform detection at all the sta-
tions, RED-PAN models outperform EqT across all the ranges
of source-receiver distances [Fig. 2(a)]. RED-PAN(60 s) has
2.7 times more valid event waveform detection than EqT
under the same receptive field. RED-PAN(30 s) detects
more earthquake waveforms with small magnitudes and short
source—receiver distances, which might appear as relatively
small-amplitude waveforms. Such results may verify the argu-
ment that earthquake waveforms with smaller amplitudes are
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Fig. 3. Examples of real-time data processing using RED-PAN(60 s) model
on raw seismograms starting from 24 March, 2022 00:37:10.00 (UTC + 0),
recorded at the three stations, (a) CHKH, (b) EHYH, and (c) ECB, closest to
the epicenters. The seismograms recorded an M, 4.7 earthquake followed by
an My 5.3 earthquake that took place very close in time and space, causing
the waveform of the latter one to superimpose on the former one. The first row
shows real-time prediction pdfs, and the second shows the pdfs obtained with
STMF processing. We renew the STMF pdfs when the prediction window
moves on to the next time stamp. Thus, the length of renewed pdfs is equal
to the prediction interval. The red frame represents the prediction window
with a 0.05-s sliding interval. We perform peak detection on the P phase
time function at each prediction time step to determine P arrival triggers.
The trigger is issued if the peak value is larger than 0.3 existing within the
first second of the incoming data, e.g., in the range of [tcurrent — 1, teurrent]-
The dotted black lines label the P phase triggers.

likely to be missed by a model with a longer input length if
large-amplitude events exist closely in time.

C. Efficiency and Accuracy of P Arrivals Triggering

The efficiency of picking P arrivals of earthquakes urgently
for EEW depends on two key factors: 1) the inference
speeds of the algorithms, which are 0.0150 and 0.0261 s for
RED-PAN(30 s) and RED-PAN(60 s), respectively, using an
Intel (R) Xeon (R) W-2125 CPU at 4.00 GHz in 1000 times,
on average; and 2) how long the earthquake waveform is
required for algorithms to pick P arrivals.

Fig. 3 demonstrates a scenario template showing how
RED-PAN(60 s) processes the incoming data, with the 0.05-s
interval of sliding prediction on the three-component seis-
mograms sampled at 100 Hz. The seismograms in Fig. 3
show an M;4.7 earthquake waveform superimposed by an
M 5.3 earthquake waveform that occurred in east Taiwan
(Fig. 4). The M 5.3 earthquake has met the criteria for issuing
earthquake warnings, but the current system has missed the
event. The first row shows the pdfs of the model current output,
spanning from (tyrent — 60) s to the current time teygent, TEP-
resented by the red frame, which can provide information for
real-time applications. For real-time detection of the P-wave,
we perform peak detection on the current output of the P
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TABLE 11
P ARRIVAL PICKING EFFICIENCY ON P-ALERT AND TSMIP DATA

RED-PAN(30s)|RED-PAN(60s)|[ MMWA model(60s)|MWA model(60s)|STA/LTA(CWB)
Recall 0.9840 0.9796 0.8278 0.2253 0.6006
P-alert [Average length of waveform to trigger (s) 0.1110 0.1294 0.2087 0.7423 -
MEAN(t; — tstvr) (5) -0.0974 -0.0670 -0.0244 -0.0581 -
Recall 0.9982 0.9967 0.9717 0.5113 0.8044
TSMIP|Average length of waveform to trigger (s) 0.0787 0.0853 0.1148 0.6415 -
MEAN(ty; — tstve) (5) -0.1030 -0.0770 -0.0577 -0.0503 -

In this study, a true positive trigger is counted when P arrival is detected within a =1 second window around the ground-truth with probability
larger than 0.3, and lies in the range of [tcurrent -1, teurrent] in the prediction window. The sliding prediction window for making this table is
0.05 seconds. tyy is the first trigger of P arrivals, and tstmr is the P arrivals obtained with STMF strategy.

phase time function and issue a triger if its peak value is
larger than 0.3 within the first second of the incoming data,
e.g., in the range of [teyrent — 1, teurrent ]- The second row is the
STMF pdfs obtained with STMF processing, with the length
of the renewed data equal to the model sliding interval. When
the model moves on to the next time stamp with a sliding
interval, it will no longer process the previously monitored
waveform in equal length, and then the corresponding STMF
pdfs of these data could be renewed. In Fig. 3, the peaks (i.e.,
triggers) detected within the range of [teurrent — 1, teurrent] With
value larger 0.3 from model output P phase time function
are labeled with dotted lines. We also provide an animation
of Fig. 3: https://youtu.be/582yB1zigWE. In this example, our
PED-PAN model can accurately detect the P-waves in (near)
real-time of the M} 5.3 earthquake to avoid missing the event
in the current EEW systems.

To evaluate the shortest amount of waveform that RED-PAN
requires to characterize P arrivals, we additionally collected
seismograms recorded by two dense strong motion seismic
networks in Taiwan, P-alert [S0] and the TSMIP [51]. This
study’s model training data do not include all TSMIP and
P-alert data. We used the top ten nearest station recordings
from 163 events of the P-alert network and 274 events of the
TSMIP network (Fig. 4) from 2013 to 2019. The magnitude of
events ranges from 4.0 to 6.91, and most of the seismograms
are collected from stations with source-receiver distances
less than 25 km. We compare the performance between the
STA/LTA algorithm tuned by CWB experts, RED-PAN(30 s),
RED-PAN(60 s), and models separately trained using the
MMWA and MWA strategy only. The true positive trigger
is counted when the P arrival is detected within a £1 s
window around the ground truth with probability larger than
0.3 and lies in the range of [teymwent — 1, teument] Under the
prediction window. The false negative trigger is counted if
no trigger is detected. We compute the true positive rate (or
recall rate) to estimate the model performance on the task of
triggering P arrivals. In this test, we made sliding predictions
with the interval of 0.05 s on the collected TSMIP and
P-alert data. For online applications, the decision of prediction
interval must also consider the model inference time on the
installed machine, the algorithms’ buffering, data flow, and
other background programs.

Fig. 5 shows the recall rate of P arrivals triggering across
different source-receiver distances and reaction times (i.e.,
length of waveform needed) to trigger P arrivals using three-
component/vertical component data. The histograms of the

true positive P triggers show that the RED-PAN models
outperform all source-receiver distances and perform better
on the TSMIP data than on the P-alert data. Table II lists
the P arrival picking efficiency on the P-alert and TSMIP
data. Generally, the RED-PAN models outperform both the
P-alert and TSMIP network data in terms of recall rate
and the average length of the waveform required for trig-
gering. Among the RED-PAN models, the performance of
RED-PAN(30 s) and RED-PAN(60 s) is comparable. On the
other hand, an obvious performance gap exists between the
TSMIP data and the P-alert data of all the compared methods,
including the STA/LTA algorithm. We attribute this to the
data quality difference between the traditional sensors and the
sensors of micro-electro-mechanical systems (MEMS) that are
composed of the P-alert network. As [53] concludes, by far,
the strong self-noise and lower responses at a low frequency
of MEMS compared with the traditional devices make part of
the seismic background noise unrecognizable. Same conditions
could also be observed in the P-alert data if the amplitude
of ground motion is not large enough, making it require
more data to recognize the seismic P phase. In addition,
Fig. 6 demonstrates the triggering error comparison between
RED-PAN(60 s) and the STA/LTA method tuned by CWB
experts, where only time misfits less than 1 s are plotted
since the STA/LTA method misses or overlooks a portion
of P arrivals as shown in Table II. Fig. 6 shows that the
misfits of P arrival triggers from both the RED-PAN(60 s)
and STA/LTA methods lie in a £0.1 s interval, while picks
of RED-PAN(60 s) are closer to the ground truth with a
higher recall rate (Table II). In practical EEW applications,
different criteria are used to avoid false positive picks leading
to false alarms. For example, a triggered P wave needs checks
with other criteria (e.g., amplitude, signal-to-noise ratio, and
P-wave peak displacement for magnitude estimate) for a valid
pick in the Taiwan EEW system [8]. In addition, a stable
hypocenter derived from qualified P picks at different stations
and the estimated ground shaking larger than the threshold are
required before an EEW can be issued.

IV. DISCUSSIONS
A. Earthquake Waveform Pattern and Model Generalization

How earthquake waveform pattern influences the model
performance is usually termed as model generalization in
seismic phase picking and earthquake detection task, which
is directly related to earthquake source parameters (i.e., focal
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Fig. 4. Distribution of data used to evaluate P arrival picking efficiency.
(a) Seismic map of used events and seismic networks. (b) Data distribution of
the P-alert and TSMIP over magnitude, SNR, and source-receiver distance.
The two pink stars denote the Mj, 4.7 earthquake and Mj 5.3 earthquake that
occurred on 2022-03-24 00:37 (UTC + 0).

mechanisms and depths), the medium which seismic waves
propagate through, and recording environments. In Table I,
10%-20% true positive ratio gap of the static prediction
performance exists between EQT and RED-PAN(60 s) on the
Taiwan dataset, which can be illustrated by the precision and
recall rate of phase picks. The precision rate is similar between
RED-PAN(60 s) and EqT, but the recall rate of EqT is much
lower than that of RED-PAN(60 s), indicating more false
negatives. Such a result implies that both RED-PAN(60 s)
and EqT could find the accurate and similar position of phase
arrivals, while EQT is not that confident in the Taiwan dataset,
suggesting that the training data specific to the region of
interest are no less critical than the model architecture design.

B. Insights of Goal-Oriented Data Augmentation

In Table II, even when trained without EEWA, the MM WA
model can trigger many P arrivals, which works as antic-
ipated since the movement of “marching” would produce
a time-clipped earthquake waveform that only contains the
P phase. The performance of the MWA model, in which
the training strategy is similar to [33], [54], could support
the above argument. It can hardly pick P arrivals using
time-clipped earthquake waveforms without marching wave-
forms in the training data. In addition, in Fig. 5, the per-
formance discrepancy on P arrival triggering between the
RED-PAN models and MMWA model lies in samples of more
considerable source-receiver distances, where the performance
of the MMWA model drops with increasing source—receiver
distance. We attribute such results to the training data diversity
of time-clipped earthquake waveforms containing only the P
phase. MMWA products have a limited number of samples
with longer source—receiver distances since they can hardly
be accommodated within a 60-s window with other earth-
quake waveforms to compute mosaic waveforms. However,
the computation of EEWA products is not limited to the
source—receiver distance of the earthquake waveform so that
RED-PAN can trigger P arrivals with a broader range of
source—receiver distances.
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V. CONCLUSION

In this study, we trained our RED-PAN model with
a recurrent residual U-Net-based multitask attention net-
work in a self-supervised manner, which dynamically adjusts
the weightings of seismic phase picking task and the
task of computing earthquake detection mask during train-
ing. The core idea of this study is to leverage the
goal-oriented data augmentation techniques, MWA, MMWA,
and EEWA, which remarkably improve the model perfor-
mance to achieve continuous and real-time data process-
ing. Our research shows that the performance of the
deep-learning-based models in different application scenar-
ios, such as static prediction and continuous/real-time data,
is highly related to the variations in training data. Aided
by the rapid developments of deep learning studies, more
advanced architectures have been applied to seismological
problems with various input and target outputs. However,
unlike computer vision or natural language processing, the
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input relevant in our field, seismogram, is nonstationary.
Our perspective of developing models with goal-oriented
data augmentation may provide another trajectory to
embark on.

APPENDIX A
FEATURES TRANSMISSION AMONG ATTENTION
NETWORKS AND RECURRENT RESIDUAL U-NET

Let us denote R®, j =1 as the shared features in the
jth level RRC layer of the shared recurrent residual U-Net
and ﬁi(’) as the learned attention gate (or mask) in the layer
j for task i. The task-specific features ﬁi(’) are computed
by elementwise multiplication of attention gates and shared
features. As Fig. 1(b) shows, our attention modules take two
inputs: the output features of the shared RRC layer RY);
the concatenation of previous attention features ﬁi('lfl) and the
shared RRC layer RU~D . Apart from the first attention module
that takes only RW as input features, other task-specific
attention features computed from the encoder and the decoder
are formulated as follows:

ald = n (gfj)(ﬁm([ﬁg;?; R(.H)D) o R(i)), =2
“)
and
Al = gf”( I ({u,m (ﬁg(;et>); R(.H)D) ORY (5

where ® denotes the elementwise multiplication; fi(j ) and
gl-m are the convolutional layers of [1 x 1] kernels with
batch normalization, following ReLU and sigmoid activation,
respectively; hf’ ) and uf’ ) represent the convolutional down-
sampling and upsampling layers that enable matching of the
corresponding resolution. For more details about RRC input

and output formulations for seismograms, we refer to [34].

APPENDIX B
DETAILS OF SINGLE-EVENT DATASET

Apart from the complete earthquake waveform in STEAD,
we also consider that the deep learning algorithms are capable
of picking and associating seismic P and S arrivals with
incomplete waveforms that might be informative enough.
We define the length of basic informative earthquake wave-
form as ypusic = M X s + €p, wWith m times the absolute
time residual between labeled P and S arrivals (ap and ag) in
seconds: ares = |as—ap|, ores > 0; and ep = 0.5 s the potential
P arrival picking error. Also, with yperp and y,pbasic defined
as randomly distributed space before the point (ap — €p) and
after the endpoint of ypuc, the length for each informative
earthquake waveform sample 7y in the Taiwan dataset can
then be formulated as follows:

(6)

Vtotal = Ybef-P T+ Vbasic T Vaft-basic
where m is controlled by a as follows:
2, if oges < 20
1.5, if 20 < ages < 25
1.2, if 25 < ages < 40.

m =
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Fig. 7. RED-PAN input template. (a) Input seismogram and the correspond-
ing target functions for the seismic phase picking modules (blue line) and
earthquake waveform detection modules (green line). (b) Confusion matrix
elements for phase picking evaluation.

Not limited to (6), for 40 < ars < 50, we simply fixed
labeled P at the fifth second. Although some of the earthquake
waveforms are not complete, it is possible that the deep
learning algorithms could characterize them with the available
background noise. A model input template is shown in Fig. 7,
showing the target functions for the seismic phase picking
and earthquake waveform detection module, and the confu-
sion matrix elements for seismic phase picking performance
evaluation.

APPENDIX C
FORMULATIONS OF MARCHING MWA

Let 7 be the length of the marching window. First, we slice
a base three-component earthquake waveform as a function of
time, Wp,se (t), with a length of (Tyackward+604 Tiorwara) S€conds.
Other earthquake waveforms are then randomly superimposed
after the earthquake waveforms on the base waveform orderly,
within the range of t|2t%0 forming a triplet set of

60-s-long waveform after marching backwardly and forwardly
[Fig. 1(c.1)]

—Thackward +60
Whackward = MDbase (t)L;:ACtW;r:Jr @)
ackward 60
Wcenter = Wbase (t)|;:::c]]zwar3 ®)
ckward 60+ Trorw,
Oforward = pase (8| ©)
where t € [—Tpackward, - - > 0, + . ., 604 Trorward |- In Wcenter, €ach

earthquake waveform is paired with P and S arrivals, while
Wbackward aNd Ororwarg Might include time-clipped earthquake
waveforms with unpaired P and S arrivals. Note that the SNR
of the superimposed P arrivals must be larger than 1.5 on
the vertical channel high-passed at 2 Hz, and the SNR of
“mosaic joints,” where other earthquake waveforms start to
superimpose, must be lower than 2 across all the channels
on waveform high-passed at 2 Hz. The SNR limitations
of P arrivals ensure their visibility, and those of mosaic
joints prevent mosaic waveforms from having unnatural abrupt
changes every superimposition.
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