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Abstract 

Landslides are an example of severe natural disasters that occur worldwide and generate many harmful effects 
that can affect the stability and development of society. A better‑quality susceptibility mapping technique 
for the landslide risk is crucial for mitigating landslides. However, the use of assemblages of multivariate statistical 
methods is still uncommon in Indonesia, particularly in the Kepahiang Regency of Bengkulu Province. Therefore, 
the objective of this study was to provide an improved framework for creating landslide susceptibility map (LSM) 
using multivariate statistical methods, i.e., the analytical hierarchy process (AHP) method, the simple additive weight‑
ing (SAW) method and the frequency ratio (FR) method. In this study, we established a landslide inventory consider‑
ing 15 causative factors using the area under the curve (AUC) validation method and another evaluation technique. 
The performance of each causative factor was evaluated using multicollinearity and Pearson correlation analysis 
with regression‑based ranking. The LSM results showed that the most susceptible areas were located in the districts 
of Kabawetan, Kepahiang, and Tebat Karai. The high landslide risk in these areas could be attributed to the slope 
conditions in mountainous regions, which are characterized by high annual rainfall and seismic activity. The AUC 
training values of the AHP, SAW, and FR methods were 0.866, 0.838, and 0.812, respectively. Then, on the validation 
dataset, the AHP method yielded the highest AUC value (0.863), followed by the SAW (0.833) and FR (0.807) methods. 
Moreover, the AHP method provided a higher accuracy value, which suggests that the AHP method is more suitable 
than the other methods. Therefore, our research indicated that all algorithm methods generate a positive impact 
and greatly improve landslide susceptibility evaluation, especially for the preparation of landslide damage assess‑
ments in this study area. Finally, the method proposed in this study could improve the feasibility of LSM and provide 
support for Indonesian government decision‑makers in arranging hazard mitigation measures in the Kepahiang 
Regency, Indonesia.

Key points 

• In this paper, we present a framework for assembling multivariate statistical methods and developing landslide 
susceptibility mapping of Kepahiang, Bengkulu Province, Indonesia.

• The analytical hierarchy process provides the highest landslide susceptibility mapping accuracy and the lowest 
uncertainties in the study region.
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1 Introduction
Natural disasters have frequently occurred in recent dec-
ades because of extreme weather and global warming, 
i.e., floods, earthquakes, and landslides. Landslides are 
one example of a severe type of major geological disaster 
(Guzzetti et al. 1999; Huang et al. 2020; Wang et al. 2021). 
The effects of the landslide phenomenon include prop-
erty loss, loss of life, and damage to infrastructure that 
can be severe enough to affect the stability of developed 
societies (Lee et  al. 2012). The occurrence of landslides 
is governed by many factors, such as earthquakes, heavy 
rainfall, and volcanic activity (Guzzetti et al. 1999). Nota-
bly, the increasing economic development in urban areas, 
such as changes in vegetation activity and the construc-
tion of roads or buildings, can cause rapid changes at 
landslide-prone locations. In Indonesia, in the Kepahiang 
Regency, Bengkulu Province, i.e., the study area, land-
slides are frequently triggered by earthquakes and heavy 
rainfall (Hadi and Siswanto 2016; BMKG 2022). The 
Kepahiang Regency is one of the most earthquake-prone 
areas along the Sumatran fault, with frequent tectonic 
and seismic activities (Sieh and Natawidjaja 2000; BMKG 
2022). Therefore, motivated by these conditions, it is nec-
essary to assess the landslide susceptibility at certain sites 
in the Kepahiang Regency. Previous landslide investiga-
tions in this study area mainly focused on documenting 
simple geological hazards and particular events (Hadi 
and Siswanto 2016; Sukisno and Muin 2012). In contrast, 
in this study, we developed a multivariate method for 
determining the landslide susceptibility in a largely over-
looked area.

The multivariate statistical method is a quantitative 
method and has been used as a landslide assessment tool 
or technique (Rotigliano et al. 2011). Quantitative models 
are commonly used to determine the landslide suscepti-
bility. However, quantitative methods depend on simul-
taneous observations and statistical models that require 
a large number of variables to produce landslide suscepti-
bility maps (Kavzoglu et al. 2014). The quantitative model 
is also an essential tool for identifying the landslide 
potential in areas with high rates of earthquake-induced 
landslides (Feizizadeh and Blaschke 2013). In particular, 
studies combining a geographic information system (GIS) 
and a multicriteria decision approach (MCDA) have been 
conducted by Goumrasa et  al. (2021) and Feizizadeh 
et al. (2014). They applied the AHP and SAW methods, 

which are effective techniques for determining the land-
slide susceptibility. El Jazouli et  al. (2019) established a 
landslide susceptibility map of Wenchuan, China, using 
the MCDA based on characterization data and rainfall 
information. Regarding the Kepahiang Regency area, 
Hadi and Siswanto (2016) established empirical relation-
ships between catastrophe theoretical aspects and slope 
stability. They emphasized the high value of the critical 
importance (Cr) index and demonstrated the relationship 
between landslide occurrence and the critical threshold 
of the slope stability. Sukisno and Muin (2012) proposed 
a landslide susceptibility mapping method based on sim-
ple geological hazard research and field techniques to 
generate landslide maps of the Kepahiang Regency area. 
In this study area, despite the existing landslide suscepti-
bility prediction studies, no prior research has employed 
the multi-variance statistical quantitative method for 
predicting potential landslides in the Kepahiang Regency, 
Indonesia.

Therefore, the main novelty of this study is the assem-
bly of various multivariate statistical methods, i.e., the 
SAW, AHP, and FR methods, to investigate an earth-
quake-prone area, namely, the Kepahiang Regency, 
Bengkulu Province, Indonesia. The objectives of this 
study were as follows: (i) develop a landslide suscepti-
bility mapping technique; (ii) apply the above three sta-
tistical algorithms/methods to compare the validation 
precision through the AUC and employ another evalu-
ation approach for assessing error metrics, namely, the 
root mean square error (RMSE), mean square error 
(MSE), mean absolute error (MAE), mean error (Mean), 
standard deviation (StD) and correlation coefficient (R); 
and (iii) identify the most effective causative factor for 
the landslide susceptibility. Additionally, this work could 
help the government mitigate the destructive effects of 
landslides, save lives, and minimize the damage caused by 
landslides in the Kepahiang Regency, Indonesia. Moreo-
ver, a reliable multivariate statistical method would be 
valuable for providing insight into accurate landslide 
susceptibility mapping and improving the ability to map 
potential landslide hazards.

2  Overview of study area
The Kepahiang Regency is located in the northeastern 
part of Bengkulu Province, Indonesia. It lies between 
3°33′0″S to 3°43′0″S and 102°29′0″E to 102°46′0″E 

• Slope, rainfall, and peak ground acceleration are the most essential spatial determinants of the changes in Kepa‑
hiang, Bengkulu Province, Indonesia.

Keywords Natural disaster, Landslide, Hazard analysis, Susceptibility mapping, Statistical method
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Fig. 1 a Location of the study area; b, c previous landslides (source: DEM‑NAS – Google Pro image); d, e previous landslides in the study area 
(source: field visits). Photographs were taken during the field visit
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(Fig. 1a) and covers an area of approximately 7046  km2. 
According to statistical data from 1941–2021 (BPS-Sta-
tistic of Kepahiang Regency 2021), the total population 
of this regency is 453,984 people, yielding a population 
density of 1843 persons/km2 (BPS-Statistic of Kepahiang 
Regency 2021). The area is mountainous with a complex 
geological structure (Hadi and Siswanto 2016; BMKG 
2022). The study area is situated in a high mountainous 
region surrounded by deep valleys and Kaba volcanic 
rock and Quaternary volcanic formations (Fig.  2g). The 
elevation ranges from 500 to 2500 m above mean sea 
level (Fig.  1a). There are three major rivers in the area: 
Air Musi, Air Brimming, and Air Sengai (Fig.  2g). The 
slope ranges from 0.4° to 65°, and the average wind veloc-
ity is approximately 7.03 km/hour. During the monsoon 
season from October to May, the study area receives high 
precipitation, with an average value of 3080 mm/year 
(Fig. 2i) (BMKG 2022). The Kepahiang Regency occurs in 
an earthquake-prone area along the Sumatran fault seg-
ment with a high slip fault rate of approximately 6.1 mm/
year (Sieh and Natawidjaja 2000; BMKG 2022). The three 
main groups of active fault zones are the Musi–Keruh 
fault, Despetah fault, and Babakan fault (Sukisno and 
Muin 2012; BMKG 2022). Figures 1b–e show the topog-
raphy as documented in previous landslide studies based 
on field investigation data and official documentation 
records.

3  Data for landslide susceptibility prediction
3.1  Data construction
In this study, a landslide susceptibility assessment was 
performed by generating a landslide inventory based 
on available causative factor data. The inventory offers 
essential information to evaluate various aspects of land-
slides, including types, locations, frequencies, and trig-
gering factors (Wieczorek 1984). Different methods, 
such as satellite imagery-based and field investigation 
techniques, have been utilized to identify and com-
pile a comprehensive landslide inventory (Wieczorek 
1984; Petley et al. 2005; Mind’je et al. 2020; Mersha and 
Meten 2020). A total of 63 landslide samples were identi-
fied using remote sensing techniques, including a digital 
elevation model of Indonesia, namely, DEM-NAS, with 
a resolution of 0.27 arc seconds, Google Earth Pro, and 
field observations (as shown in Fig. 1). Of these samples, 
11 were obtained through field visits coordinated by the 
Department of Physics and Geophysics of Bengkulu Uni-
versity, Indonesia. An additional 52 landslide samples 
were collected based on DEM-NAS and Google Earth 
Pro data. To create training and validation datasets, these 
selected landslide samples were randomly split into frac-
tions of 80% and 20% for training and testing purposes, 
respectively, following the approach of Mind’je et  al. 

(2020) and Mersha and Meten (2020). On the basis of a 
similar approach suggested by Tang et al. (2020), 63 non-
landslide samples were also compiled using Google Earth 
Pro and DEM-NAS. These non-landslide samples were 
divided into training (80%) and validation data (20%). All 
datasets were then merged for model validation. Both 
the training and validation datasets were represented in 
binary form, with a value of 0 assigned to non-landslide 
locations and a value of 1 assigned to landslide locations. 
Next, the dataset containing the landslide catalog and 
causative factors underwent transformation within Arc-
GIS 10.8.1 software, resulting in a dataset with dimen-
sions of 2000 columns and 1600 rows. Within the study 
area, each pixel was covered by an 11 × 11-pixel window. 
Approximately ± 20,000 pixels were analyzed in the 
study area. Additionally, 63 non-landslide points were 
extracted to construct a network model dataset, includ-
ing image edge pixels to enhance the accuracy of the 
LSM. The entire dataset was divided into two segments, 
with 80% allocated for model training and the remaining 
20% allocated for evaluating the LSM predictive capabil-
ity, as outlined by Azarafza et  al. (2021) and Tang et al. 
(2020).

3.2  Landslide causative factors
A landslide susceptibility map was constructed based on 
the relationships between the considered landslide causa-
tive factors and landslide inventory data (Tang et al. 2020; 
Dou et al. 2015; Das et al. 2013). In this study area, causa-
tive factors were identified based on the available field 
data and official data. All causative factors were acquired 
from DEM-NAS, transformed into raster format and 
harmonized to 30 × 30 m cell pixels using ArcGIS 10.8.1, 
as detailed in Additional file 1: Table S1. Then, we sepa-
rated the causative factors into the following categories: 
topographical category (altitude, slope degree, slope 
aspect, plan curvature, and profile curvature), geologi-
cal category (geology and distance from faults), hydro-
logical category (annual rainfall), and seismic category 
(peak ground acceleration (PGA), time-averaged shear-
wave velocity to the 30-m depth (Vs30), predominant 
frequency, amplification factor, and ground shear strain 
(GSS)). These factors were selected for analysis in this 
study, as shown in Fig. 2.

3.2.1  Topographic category
The altitude is a crucial factor in identifying changes in 
slope conditions and measuring the direction, steep-
ness, decline, or growth over a specific distance (Chang 
et al. 2019; Mind’je et al. 2020). It can be classified into 
five categories (Fig.  2a). The slope degree is a crucial 
factor in areas prone to landslide failure, determining 
the stress distribution on hillslopes (Donnaruma et  al. 
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Fig. 2 Landslide causative factors considered in the study area: a Altitude; b slope degree; c slope aspect; d plan curvature; e profile curvature; 
f distance from the road; g geology; h distance from the fault; i rainfall; j peak ground acceleration (PGA); k time‑averaged shear‑wave velocity 
to the 30‑m depth (Vs30); l amplification factor; m predominant frequency; n ground shear strain
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2013; Chen et al. 2018) (Fig. 2b). The slope aspect indi-
cates the slope face state, which is related to landslide 
events due to water control and vegetation moisturiza-
tion. The plan curvature describes the geometry of the 
slope, while the profile curvature describes the maxi-
mum parallel slope divided into three classes (Fig. 2d). 
The distance from the road is another contributing fac-
tor to landslide occurrence, and some landslide events 
are related to construction conditions in mountain 
areas, such as slope cutoffs for highways or construc-
tion purposes (Fig. 2f ).

3.2.2  Geological category
Geology imposes a considerable influence on the 
occurrence of landslides (Chigara 2002; Vasudevan and 
Ramanathan 2016). The geology factor is divided into 
six types (Fig. 2g). The distance from faults is correlated 
with geology, affecting the structural plane and rock 
strength (Has et al. 2010; Gemitzi et al. 2011). The dis-
tance from faults is classified into five classes (Fig. 2h).

Fig. 2 continued
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3.2.3  Hydrological category
Rainfall is a crucial factor in triggering landslides, as it 
influences the development and occurrence of events 
(Lin 2015; Wu et al. 2016; Lee 2017; Jaelani et al. 2020). 
As a result, moisture in soil increases, reducing soil 
cohesion and increasing the likelihood of landslides 
(Vasudevan and Ramanathan 2016; Jaelani et al. 2020). 
Data on the average annual rainfall from 1914–2021 
were collected from the Indonesia Ministry of Clima-
tology, Meteorology, and Geophysics (BMKG 2022) and 
divided into eight classes, as shown in Fig. 2i.

3.2.4  Seismic control category
Seismic control categorical variables are crucial in deter-
mining landslide events, as earthquake-induced land-
slides are affected by the earthquake magnitude (Hsieh 
et al. 2014; Wu et al. 2019; Martino et al. 2022). The cor-
relation between the landslide density and PGA has been 
reported in previous studies (Jibson and Keefer 1994; 
Keefer 1984; Meunier et  al. 2008). The seismic control 
category in this study encompasses earthquake factors, 
which are divided into two classifications: non-field and 
field causative factors.

The non-field causative factors include the causative 
factors of the PGA and Vs30 (Fig. 2j, k). The PGA is equal 
to the maximum ground vibration or highest acceleration 
during earthquake shaking (Das et al. 2013; Yin 2014). To 
determine the PGA value in this study, earthquake data 
were retrieved from the United States Geological Survey 
(USGS), International Seismological Center (ISC), and 
BMKG. Earthquake events were selected for the period 
from 1914 to 2021, with average magnitudes of M > 5.0 
and depths of < 70 km. We used the total probability seis-
mic hazard approach (PSHA) for the calculation (Addi-
tional file 1: Note S1 for the detailed equation). Then, we 
used MATLAB software to acquire PGA data (Fig.  2j). 
The PGA value classification was derived from the Min-
istry of Disaster Management Bengkulu (BNPB). A high 
PGA value indicates an unsafe (high-risk) area where an 
earthquake is more likely to occur and a landslide is more 
likely to be triggered (Das et al. 2013; Yin 2014). Then, we 
also selected Vs30 as a causative factor. The Vs30 indica-
tor is another useful geotechnical parameter for seismic 
analysis, indicating the magnitude of the shear modulus 
and elastic properties (Allen and Wald 2007) (Fig.  2k). 
To determine the causative factor of Vs30, data were col-
lected from the USGS database, with an observational 
point grid of approximately 1 km. A low Vs30 value sug-
gests a higher risk of an earthquake or landslide in the 
area, which is related to the stiffness of the rock as well as 
the slope conditions (Brain et al. 2015).

The field factors include the predominant frequency, 
amplification factor, and GSS (Fig.  2l and m). The 

predominant frequency is related to the depth and bed-
rock (Hata et al. 2015) (Fig. 2m). The amplification factor 
is determined by the topography and geological factors 
(Fig.  2l). Warnana et  al. (2011) found that in seismic 
hazard analysis, a high amplification value indicates a 
large thickness of soft soil or sediment (Fitri et al. 2018; 
Oliveira et  al. 2008; Ishihara et  al. 1996). Then, we also 
selected the GSS as a causative factor (Fig.  2n). Moreo-
ver, the GSS is a causative factor reflecting the subsurface 
structure and soil characteristics (Damayanti and Sis-
manto 2021; Ishihara et al. 1996). Microtremor data were 
used to analyze GSS values, resulting in amplification 
factor and predominant frequency values. Field data were 
collected from the Department of Physics and Geophys-
ics, Bengkulu University, Indonesia. The GSS was calcu-
lated as described below (Nakamura 2008) (Additional 
file 1: Note S2). Then, Geopsy software was used to ana-
lyze the amplification factor and predominant frequency 
for determining the GSS value.

4  Methodology
4.1  Overview
In this paper, we proposed a multivariate statistical 
method to improve the prediction accuracy of LSM in 
Kepahiang Regency, Indonesia. Figure 3 shows the over-
all workflow of this study, which involves five steps: (1) 
preparation of a landslide inventory and causative fac-
tors; (2) feature selection of the causative factors using 
multicollinearity and Pearson correlation analysis with 
rank-based regression; (3) applying a modeling process 
using the AHP, SAW, and FR methods; (4) generation of 
landslide susceptibility maps; (5) validation and compari-
son of each map using the AUC technique and another 
evaluation method, thereby assessing error metrics, i.e., 
RMSE, MSE, MAE, Mean, StD and R.

4.2  Multicollinearity and Pearson analysis
In this study, we utilized multicollinearity and Pear-
son correlation analysis with regression rank to select 
the best causative factors for obtaining better-quality 
landslide susceptibility maps. Multicollinearity among 
the selected factors was assessed based on the variance 
inflation factor (VIF) and tolerance (TOL) using training 
data (Roy et  al. 2019; Mallick et  al. 2021). A TOL value 
of < 0.1 and a VIF value of > 5 indicate the presence of 
multicollinearity problems, which should be excluded in 
the process of landslide susceptibility mapping (Mallick 
et  al. 2021) (Fig.  4). Additionally, we employed Pearson 
correlation analysis to identify appropriate independent 
causative factors, excluding factors with a correlation 
value > 0.7, indicating high collinearity (Roy et  al. 2019; 
Kalantar et al. 2020) (Fig. 5). Finally, to rank the impor-
tance of the selected factors in the study area, we used 
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Fig. 3 Study flowchart for landslide susceptibility mapping

Fig. 4 Multicollinearity test results for the 15 landslide causative factors. Disr (distance from the road), Pro (profile curvature), Pln (plan curvature), 
DisF (distance from the fault), A0 (amplification factor), f0 (frequency domain), Vs30 (shear velocity to the 30‑m depth), Geo (geology), GSS (ground 
shear strain), Elv (elevation), Altd (altitude), Slpa (slope aspect), PGA (peak ground acceleration), Rain (annual rainfall), and Slpd (slope degree) are 
causative factors in this study
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regression analysis (Soma et al. 2019). Detailed equations 
are provided in Additional file 1: Note S3.

4.3  AHP method
The AHP method is a component of the overall MCDA, 
enabling decision-makers to create a scale of criteria 
for alternative solutions. The basic concept of the AHP 
method is based on pairwise matrix comparison of index 
criteria, with which decision-makers can assess the rela-
tive importance or preference between criteria or alterna-
tives. In the AHP method, numerical values are assigned 
to comparisons, determining the priority of individ-
ual factors and subfactors causing landslides (Fig.  6) 

(Additional file 1: Table S2). The Saaty scale is commonly 
used, in which numerical values ranging from 1 to 9 are 
assigned, with the detailed equation provided in Addi-
tional file 1: Note S4 (Saaty and Vargas 2001; Saaty 1994).

4.4  SAW method
The goal of the SAW method is to find the weighted sum 
of performance ratings using specific criteria and a deci-
sion matrix to evaluate each causative factor (Podvezko 
2011). The SAW method was employed for assessing the 
susceptibility or potential risk of landslides by consider-
ing the various influencing factors or criteria and ranking 
the alternatives based on the multiple criteria or factors 

Fig. 5 Pearson correlation analysis between the landslide causative factors. The blue circle with a value less than 0.7 indicates a major causative 
factor considering the threshold for appropriate features



Page 10 of 22Putriani et al. Terrestrial, Atmospheric and Oceanic Sciences           (2023) 34:18 

(Kusumadewi and Guswaludin 2005) (Fig. 7) (Additional 
file 1: Table S3). The SAW equation is detailed in Addi-
tional file 1: Note S5.

4.5  FR method
The basic concept of the FR method is the computation 
of the ratio and indication of the possibility of landslide 

occurrence or nonoccurrence for each causative factor 
class or interval (Li et al. 2017). We used this method to 
evaluate the causative factors and assess their relation-
ship with the landslide distribution. Then, we divided 
the landslide frequency based on the non-landslide fre-
quency for each factor class or interval. Each class fre-
quency ratio was calculated using the relationships for 

Fig. 6 Parameter weights of the AHP method

Fig. 7 Parameter weights of the SAW method
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landslide events (Oh et al. 2017). An FR value of 1 indi-
cates an average value of the landslide occurrence in the 
total area. An FR value less than 1 indicates a low correla-
tion between landslide occurrence and a given causative 
factor in the total area; the detailed equation is provided 
in Additional file  1: Note S6. Conversely, an FR value 
greater than 1 indicates a high correlation between land-
slide occurrence and a given causative factor in the total 
area (Kayastha et al. 2013) (Additional file 1: Table S4).

4.6  Validation Model
Validation models are an important and necessary part of 
the process of creating landslide susceptibility maps. The 
validation method was used to assess the model quality 
and confirm the accuracy of landslide predictions (Chen 
et  al. 2018). In this paper, we calculated the AUC value 
(Fig. 8) as well as RMSE, MSE, MAE and StD values to 
evaluate the LSM performance (Figs. 9, 10, and 11). The 
AUC curve in this study was plotted for both the training 
and testing datasets, with AUC values ranging from 0 to 
1. Values closer to 1 indicate a highly accurate or superior 
model (Bui et al. 2016). Further details and specific equa-
tions are explained in Additional file 1: Note S7.

5  Results
In this section, we aim to explore the feasibility of apply-
ing the AHP, SAW, and FR methods for creating LSMs. 
In addition, the selection of causative factors is a crucial 
aspect in ensuring the quality of susceptibility assessment 
in this study. We also evaluated and compared the perfor-
mance of each model using various evaluation metrics.

5.1  Evaluation of the landslide causative factors
In this paper, SPSS and Software-R were used to evalu-
ate the collinearity of the landslide causative factors. The 
choice of causative factor is a key aspect that influences 
the quality of the resultant landslide susceptibility maps 
(Roy et  al. 2019). Although various methodologies can 
be used for selecting causative factors, there are still no 
specific criteria for ranking these causative factors (Cos-
tanzo et  al. 2014). Therefore, we chose multicollinearity 
and Pearson correlation analysis followed by regression-
based ranking (Irigaray et  al. 2007). The multicollin-
earity results of the VIF test showed that all causative 
factors had values less than 5, and the TOL test results 
showed that all causative factor values were higher than 
0.1. The maximum TOL and VIF values were 0.891 and 
4.021, respectively (Fig. 4). As recommended by Roy et al. 
(2019) and Mallick et al. (2021), none of the values for the 
causative factors obtained in this study indicated multi-
collinearity problems. These causative factors could thus 
improve the accuracy of the generated landslide suscepti-
bility maps. The TOL and VIF test results for all causative 

factors are shown in Fig. 4. In our results, there was no 
significant reduction in the entropy of a given category or 
no collinearity with another category. Then, the Pearson 
correlation analysis results showed that 15 causative fac-
tors had values mostly less than 0.7. The causative factor 
of the distance from the road exhibited a value of 0.68, 
close to the maximum value for the appropriate attribute 
feature but still acceptable for consideration in landslide 
susceptibility mapping (Fig. 5). Detailed Pearson correla-
tion assessment results for all causative factors are shown 
in Fig.  5. Furthermore, regression was used to rank the 
best causative factors for assessing LSMs in this study. 
Through calculation, the top three factors in terms of 
importance are the slope degree, rainfall, and PGA, with 
details shown in Fig.  12 and Additional file  1: Table  S5. 
Therefore, based on the analysis results, in our research, 
all 15 causative factors were considered for creating 
LSMs.

5.2  Evaluation of the AHP, SAW, and FR methods
In this research, we evaluated and compared three sta-
tistical methods, and we then used the AHP, SAW and 
FR methods to create LSMs of the study area. First, with 
the use of the AHP method, weights were assigned to 
each of the landslide-controlling factors using pairwise 
comparisons (Saaty 1994). Accordingly, each causative 
factor was assigned a score from 1 to 9 based on its rela-
tive importance (Saaty and Vargas 2001). If the param-
eter on the x-axis is more important than that on the 
y-axis, the value varies between 1 and 9. However, when 
the factor on the y-axis is more important, the recip-
rocal values range from 1/2 to 1/9. AHP calculation 
results were obtained using ArcGIS 10.8.1 software with 
the integrated raster calculator spatial analysis tool, as 
shown in Fig. 6 and Additional file 1: Table S2. Regard-
ing SAW evaluation, with the use of the multicriteria 
decision approach, weights were determined for the dif-
ferent factors employed in landslide susceptibility map-
ping (Kusumadewi and Guswaludin 2005). Figure 7 and 
Additional file  1: Table  S3 provide the calculated SAW 
weight scores for all landslide causative factors. The high-
est weight score of 0.182 was assigned to the slope degree 
(Fig. 7). Additionally, we obtained FR calculation results 
to evaluate the causative factors, assess their relationship 
with the landslide distribution, and create landslide sus-
ceptibility maps (Li et al. 2017). Additional file 1: Table S4 
shows the calculated FR values for all causative factors. 
For example, in areas with elevations of > 1000 m, the 
FR value was > 1, indicating a higher possibility of land-
slide occurrence. Finally, the AHP, SAW and FR values 
were examined to validate the model accuracy, which is 
explained in Sect. 5.4.
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5.3  LSM
The LSM is a visualization of the results for predicting 
the landslide susceptibility. In this study, we created 
LSMs based on the AHP, SAW, and FR methods using 
ArcGIS software. Subsequently, following the Jenks 
natural breakpoint classification algorithm, the LSMs in 

this study were divided into four susceptibility groups 
in ArcGIS: very high, high, moderate, and low.

The very high- and high-susceptibility areas gener-
ated by the AHP method accounted for 21.5% and 
40.4%, respectively, of the entire study area. The 
moderate- and low-susceptibility areas constituted 

Fig. 8 AUC curve validation for the AHP, SAW and FR models. a Training sample set; b testing sample set
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27.0% and 11.1%, respectively, of the whole area 
(Figs.  13a and 14a, respectively). Similarly, the very 
high- and high-susceptibility areas generated by the 
SAW method accounted for 12.3% and 37.1%, respec-
tively, of the whole study area. The moderate- and 
low-susceptibility areas accounted for 40.3% and 
10.3%, respectively, of the entire area (Figs.  13b and 
14b, respectively). Finally, the FR method yielded very 
high- and high-susceptibility areas that accounted for 
28.4% and 32.4%, respectively, of the entire study area. 
The moderate- and low-susceptibility areas accounted 
for 23.5% and 15.7%, respectively, of the whole area 
(Figs.  13c and 14c, respectively). The analysis of the 

LSMs of this study area showed that the proportion 
of moderate-susceptibility areas is the highest among 
the four methods. Very high-vulnerability zones were 
found in the Kabawetan, Kepahiang, and Tebat Karai 
districts (Fig.  14). These areas have a high possibil-
ity of sliding due to their high average precipitation, 
which also triggers earthquakes. Moreover, most of the 
study area is mountainous with high hills, rainfall, and 
seismic activity, which significantly influences land-
slide occurrence. Given that Kabawetan and Kepahi-
ang districts are located in high-susceptibility zones 
and are densely populated areas, it is crucial to raise 
awareness regarding the potential or dangerous effects 
of landslides.

Fig. 9 Loss value and MAE (mean absolute error) of the training and testing datasets: AHP (A, B), SAW (C, D), and FR (E, F)
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5.4  Validation
Model validation is an essential component of the 
development of landslide susceptibility mapping. First, 
we divided the dataset into training and testing datasets 
following an 80:20 ratio (Azarafza et  al. 2021). Next, 
we imported the training dataset into the AHP, SAW, 
and FR methods to determine the hidden relationships 
between the landslide causative factors and landslide 
occurrence. During model evaluation, we validated the 
performance of LSMs using the AUC technique and 
assessed the accuracy and error metrics using both the 

training and testing datasets (Fig.  8). The AUC curve 
was created using the R programming language. The 
x-axis of the AUC curve indicates specificity, represent-
ing the probability of a non-landslide point, while the 
y-axis indicates sensitivity, representing the probability 
of correct prediction. An AUC value close to 1 indi-
cates a more accurate prediction result (Bui et al. 2016). 
The success rates on the training dataset for the AHP, 
SAW, and FR methods were 0.866, 0.838, and 0.812, 
respectively (Fig.  8a). Similarly, employing the testing 
dataset to obtain prediction rates for the AHP, SAW, 

Fig. 10 Evaluation error metrics, namely, MSE (mean square error) and RMSE (root mean square error), Mean, and StD (standard deviation), 
of the AHP, SAW, and FR methods
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and FR methods, we found values of 0.863, 0.833, and 
0.807, respectively (Fig. 8b). Based on the results, it was 
evident that the AHP algorithm exhibits the highest 
accuracy, sensitivity, and reliability among the landslide 
predictive models. Additionally, we adopted another 
evaluation technique, i.e., assessing the error metrics 

for each algorithm method (Figs.  9, 10, and 11). Fig-
ure 9 shows the variation curves of the model accuracy 
loss for the four methods using the training and test-
ing datasets. In addition, Fig.  10 shows the analysis of 
the error metrics of the RMSE, MSE, Mean and StD for 
each algorithm. Further discussions and comparisons 
of the model performance are presented in Sect. 5.5.

Fig. 11 Correlation between the true and predicted values for the three algorithms
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5.5  Performance of the models
In our research study, we established four methods 
to create LSMs. The accuracy of the LSM models was 
assessed using AUC validation. Figure 8 shows the AUC 
curves for both the training and testing datasets. Among 
the four models, the AHP method achieved the highest 
AUC value (0.866 and 0.863) for both the training and 
test datasets, respectively, followed by the SAW and FR 
methods (Fig. 8b, c). However, relying solely on the AUC 
as a metric might not be the optimal approach for deter-
mining the accuracy of each algorithm or guarantee-
ing higher spatial accuracy (Parra et  al. 2023). Then, by 
incorporating multiple evaluation metrics, we aimed to 
gain a deeper understanding of the model performance 
and accuracy of each algorithm method. Therefore, to 
provide a comprehensive evaluation, we utilized other 
metrics, such as loss accuracy, MSE, RMSE, Mean, StD 
and R (Figs. 9, 10, and 11), to analyze the accuracy of the 
models based on both the training and testing datasets.

The loss curves for the training and testing datasets 
are shown Fig. 9, comparing the loss and epoch. In this 
study, we set the initial increment to 0.1 to dynamically 
decrease the number of the model operations (Fig.  9), 
as recommended by Azarafza et  al. (2021) to achieve a 

better-quality LSM. Then, in the testing process and loss 
vs. epoch comparison, the loss value of the FR method 
decreased in 5 iterations and then stabilized at approxi-
mately 0.005 (Fig. 9e). This condition may affect the con-
sideration of spatial features in the acquisition of pixel 
sequences, but it still follows the normal trend for creat-
ing LSMs (Azarafza et al. 2021). However, in the training 
process loss vs. epoch comparison of the SAW method, 
the loss value decreased in the first five iterations and 
then stabilized closer to zero (Fig.  9c). Similarly, the 
AHP method also showed a loss with epoch value that 
decreased in the first five iterations and stabilized close to 
zero, with a trend change that remained more stable than 
that of the other methods (Fig. 9a). The fixed epoch num-
ber in this study ranged from 1 to 30, with a step size of 
5. In Fig. 9e, we found that the loss function curve of the 
FR model was unstable but still approached normal limits 
when the epoch was 10. Finally, we could conclude that 
in terms of the loss accuracy (loss–epoch curve), the loss 
function curve of the AHP model remained stable when 
the epoch was 5 (Fig. 9a).

Moreover, Fig.  9 shows the accuracy curves for the 
training and testing datasets in terms of the MAE and 
epoch comparison. The analyzed results of the MAE 

Fig. 12 Ranking of the causative factors
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indicated that the AHP model exhibits a slight change 
in the trend (Fig. 9b). It remained consistent with a sta-
ble decrease during the five iterations, with a MAE value 
closer to 0.200. Similarly, the change trends of the MAE 
and loss were consistent for the AHP method in regard 
to the prediction accuracy for both the training and test-
ing datasets. The unstable conditions of the SAW and 
FR methods (Fig. 9d, f ) may be due to the acquisition of 
pixel sequences and the absence of overfitting problems. 
Therefore, based on the loss with epoch and MAE vs. 
epoch comparison, the parameter settings for the AHP 
algorithm are highly reasonable, followed by the SAW 
and FR methods, for creating LSMs.

In this study, we also adopted another evaluation 
approach by referencing Nguyen et al. 2019, to assess the 
error in every algorithm (Fig.  10). The error evaluation 
entailed the comparison of the MSE and RMSE values. 
The prediction values varied between 0 and 1 (Nguyen 
et  al. 2019). The results indicated that the maximum 
values of the MSE and RMSE are obtained by the AHP 
method (0.002, 0.038) (Fig.  10a), followed by the SAW 
and FR methods (Fig.  10c, e). Furthermore, we evalu-
ated the frequency versus error, visualizing the values of 
the Mean and StD to assess the LSM quality (Fig. 10b, d, 
f ). The results showed that using the AHP method also 

resulted in the minimum values (Fig. 10b). The minimum 
StD value indicates that the developed model achieves 
favorable predictive ability in creating LSMs, signify-
ing the best prediction performance and high precision 
(Nguyen et al. 2019). The mean rates for the AHP, SAW, 
and FR methods were 0.000, 0.002, and 0.021, respec-
tively (Fig. 11b, d, f, h). Similarly, employing the StD rates 
for the AHP, SAW, and FR methods, we obtained values 
of 0.000, 0.075 and 0.276, respectively (Fig.  11b, d, f ). 
Finally, based on frequency vs. error analysis, the AHP 
method demonstrated a better performance than the 
other algorithm methods in this study. To further verify 
the prediction reliability of LSMs, we conducted a corre-
lation analysis between the predicted and true values, as 
shown in Fig. 11. The correlation coefficient based on the 
FR model was the lowest, with a value of 0.986, indicat-
ing that the accuracy of the FR model was lower than that 
of the other methods. In contrast, the correlation coef-
ficient of the AHP model was 0.998, which is significant 
and reveals a high prediction accuracy. The correlation 
coefficient showed that the AHP method is better than 
the other methods. Then, the correlation coefficients of 
the methods could be ranked as AHP > SAW > FR over-
all. Finally, the accuracy analysis with error metrics indi-
cated that most of the evaluation results show that the 

Fig. 13 Simulated landslide percentages with the three algorithms
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AHP method ranks first in terms of accuracy for creating 
LSMs of the study area.

6  Discussion
Spatial prediction of landslides has been considered 
for assessing and mitigating risks (Lee et  al. 2012). 
Although other methodologies involving geological 
techniques have been proposed for the study area, the 
accuracy of the predictions remains a controversial 
issue. In this research, we addressed this concern by 
evaluating and comparing several multivariate statisti-
cal methods. In general, FR method outperforms the 
other methods in terms of effectiveness. However, this 
might lead to computational challenges in data process-
ing. Nevertheless, based on the AUC results (Fig. 8), the 
FR method could still be deemed acceptable for creat-
ing LSMs, with an AUC value exceeding 0.8, represent-
ing an accuracy of over 80% (Bui et al. 2016). Regarding 
the AUC results shown in Fig. 8, all algorithms in this 
study demonstrated high values. Nonetheless, rely-
ing solely on the evaluation of this metric may not 
be the optimal strategy to guarantee a higher level of 

spatial accuracy during model evaluation (Nguyen et al. 
2019). Therefore, an additional evaluation technique is 
needed. In this study, RMSE, MSE, MAE, Mean, StD, 
and R provided more detailed insights into the differ-
ences in accuracy among the utilized methods. The 
FR method yielded AUC values ranging from 0.807 to 
0.812, with a mean value of 0.021 and an StD value of 
0.276. The SAW method yielded AUC values ranging 
from 0.833 to 0.838, with RMSE and Mean values of 
0.077 and 0.002, respectively. Finally, the AHP method 
exhibited AUC values ranging from 0.863 to 0.866, with 
an MSE value of 0.002, Mean value of 0.000 and R value 
of 0.998. Ultimately, based on the AUC and other eval-
uation results (RMSE, MSE, MAE, Mean, StD, and R), 
the results indicated that the AHP method outperforms 
the other algorithms in terms of prediction accuracy. 
The AHP method demonstrated the highest predic-
tion accuracy, followed by the FR and SAW methods. 
Despite being one of the traditional methods for creat-
ing LSMs of this study area, the AHP method provided 
a superior performance relative to the other algorithms. 
Its higher prediction accuracy and precision establish it 

Fig. 14 Landslide susceptibility map of the study area obtained using the three methods: a AHP; b SAW; c FR
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as the most reliable method for creating LSMs in the 
Kepahiang Regency, Indonesia. These findings demon-
strate the effectiveness of the AHP method in predict-
ing the landslide susceptibility and provide valuable 
insights for landslide risk assessment and mitigation in 
the study region.

Then, based on the assessment of the analysis results 
in ArcGIS software, we calculated the percentage of 
historical landslides and created LSMs by four sta-
tistical methods in four categories (Figs.  13 and 14, 
respectively). The results showed that the majority 
of landslides could be classified in the very high and 
moderate susceptibility categories, with most occur-
rences observed in the Kabawetan, Kepahiang, and 
Tebat Karai districts (Fig.  14). Then, to identify the 
most critical causative factors and better understand 
the mechanism of triggering landslides in this study, 
we employed regression ranking techniques (Soma 
et al. 2019). The regression results indicated that slope, 
rainfall, and peak ground acceleration (PGA) are the 
most important causative factors and key contributors 
to landslides in the study area (Fig.  12 and Additional 
file  1: Table  S5). Furthermore, based on information 
gleaned from historical meteorological data, the land-
slides in this study area are primarily caused by slope 
and rainfall due to the effect of mountainous areas. 
During the rainy season (October until May), landslides 
are the most common occurrence, with an annual pre-
cipitation ranging from 2000 to 4000 mm/year (BMKG 
2022). The high rainfall softens the soil under increas-
ing water saturation, leading to cracks and water sensi-
tivity in the ground, resulting in static liquefaction and 
collapsibility, making the area vulnerable to landslides. 
Additionally, the increase in the pore water pressure 
further increases the weight of the rock mass, creat-
ing a slide zone on the slope and causing slope failure 
or landslides (Hsieh et al. 2014). During our field visit, 
we observed open cracks on some slopes, indicat-
ing the potential for future slope failure or landslides. 
Moreover, the PGA is one of the main causative fac-
tors contributing to the occurrence of landslides in 
this area. PGA values can represent part of the soil or 
rock conditions, and landslides are triggered when the 
soil strength is diminished during earthquake events 
(Yin 2014). The Kepahiang Regency area is part of the 
Sumatran fault belt system, which is tectonically and 
seismically active. For instance, on 15 December 1979, 
an earthquake with a magnitude of 6.6 and a depth of 
33 km caused major landslides and the collapse of 500 
houses in this area (Hadi and Siswanto 2016; BMKG 
2022). The frequent tectonic and seismic activities 
in the region add to the susceptibility of landslides in 
the study area. Additionally, the cutting of roads and 

farming activities contribute to slope failure or land-
slides in this study area.

7  Conclusions
Landslides rank among the most severe natural disasters 
in the world, causing significant devastation to human 
lives and critical infrastructure. Therefore, to prevent 
casualties resulting from potential landslides, we assessed 
the use of multivariate statistical methods for landslide 
susceptibility mapping in the Kepahiang Regency, Beng-
kulu Province, Indonesia. In this study, First, we created 
a landslide catalog dataset by using satellite imagery and 
field inquiry data, thereby combining non-landslide data 
to enhance the accuracy of LSMs. We utilized ArcMap, 
SPSS, and Software-R for data processing. Addition-
ally, we considered 15 causative factors for constructing 
LSMs. We employed multicollinearity analysis, Pear-
son correlation analysis, and regression-based ranking 
to identify the most influential causative factors. Our 
results indicated that the top three causative factors are 
the slope degree, rainfall, and PGA, which play signifi-
cant roles in susceptibility assessment in the study area. 
Moreover, this condition matches the field situation of 
the study area (with high annual precipitation), and com-
bined with frequent tectonic and seismic activities, it is 
particularly vulnerable to landslides. Then, we validated 
these methods using multiple metrics, including the 
AUC, MAE, MSE, RMSE, Mean, StD, and R. The AUC 
validation results showed that the AHP method achieved 
the highest AUC score of 0.863, followed by the SAW and 
FR methods, at 0.833 and 0.807, respectively. We also 
assessed the accuracy and error using MSE and RMSE 
values, with the AHP method providing the highest val-
ues. The mean rates for the AHP, SAW, and FR methods 
were 0.000, 0.002, and 0.021, respectively. Regarding 
the methods, overall, the correlation coefficient rank-
ings were as follows: AHP (0.998), SAW (0.992), and FR 
(0.986) methods. Considering comprehensive accuracy 
evaluation, it could be concluded that all three models 
(AHP, SAW, and FR) demonstrate satisfactory perfor-
mance. However, the AHP method stood out as the best 
method for creating LSMs based on all evaluation met-
rics. In addition to advancing LSM development, the 
evaluation using multiple metrics could facilitate com-
prehensive model performance assessment. We catego-
rized LSMs into four zones: very high, high, moderate, 
and low susceptibility. Our results revealed that zones 
with increased susceptibility are more common in the 
Ujan Mas Seberang Musi, Kepahiang, Kaba Wetan, and 
Tebat Karai districts, accounting for over 50% of the 
study area. Therefore, the significance of early warn-
ing of landslides must be strengthened to mitigate land-
slide risks and prevent property damage. In addition, the 
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distribution of information on the landslide susceptibility 
among the public could help save lives and support the 
government in managing high-risk areas, development of 
infrastructure, and planning of sustainable land uses.
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